Model shows the substrate (L-Arginine) binding to nNOS in a two-step reversible fashion. First there is rapid binding equilibrium between Im-nNOS and L-Arginine to form an intermediate that contains bound imidazole and L-Arginine. This is followed by a slower conformational change in the Im-enzyme-substrate complex that is associated with release of bound imidazole and generation of a modified enzyme-substrate complex which is detected due to spectral change. Replicates Figure 4 (right panel). % Note: All the concentrations are in micro Mole (uM) function moose_convert %Matlab simulation for chemical kinetics % Saved on Thu Aug 3 14:51:29 2006 % Automatically generated from kkit model in MOOSE by conv_matlab global buff; global t; global y; % Define Tables here tspan=[0, 0.09]; % Molecule names molnames = { '1 /kinetics/Im-nNOS' '2 /kinetics/L-Arginine' '3 /kinetics/Im-nNOS-L-Arginine' '4 /kinetics/nNOS-L-Arginine' '5 /kinetics/Imidazole' }; bufnames = { }; sumtotnames = { }; % Initial concs of 5 molecules y0(1) = 1; y0(2) = 6000; y0(3) = 0; y0(4) = 0; y0(5) = 0; % Call the ODE solver and display results [t, y] = ode23s(@f, tspan, y0); hold on; do_plots; function do_plots() global t; global y; %plot(t,y(:,1)); %plot in matlab temp = [t, y(:, 4)]; save('/home/prasoon/models/nNOS/Files_to_upload/Arg_new/plot1/nNOS_L-Arg_m.dat','temp','-ASCII'); %plot(t,y(:,3)); %plot(t,y(:,5)); %plot(t,y(:,2)); plot(t,y(:,4)); % Evaluation function function dydt = f(t, y) global buff; dydt = [ - 250 * y(2) * y(1) + 125000 * y(3) - 250 * y(2) * y(1) + 125000 * y(3) + 250 * y(2) * y(1) - 125000 * y(3) - 81 * y(3) + 0.45 * y(4) * y(5) + 81 * y(3) - 0.45 * y(4) * y(5) + 81 * y(3) - 0.45 * y(4) * y(5) ]; % end of model