NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for Sos*

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
Sos* participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000020

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • MAPK-bistability
    -fig1c
  • 35Network
    Shared_Object_MAPK-bistability-fig1c Sos PKC 
    MAPK PLA2 Ras 
    PDGFR 
    Model for figure 1c in Bhalla US et al. Science (2002) 297(5583):1018-23.
    The demo for this figure is available here. This synaptic signaling model is without the MKP-1 feedback, so it is bistable and remains so over long periods.

    Sos* acting as a Molecule in  
    MAPK-bistability-fig1c Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    Sos*
  • MAPK-bistability
    -fig1c

    Accession No. : 35
  • Sos
    Pathway No. : 180
    01000No
    Phosphorylated form of SoS. Nominally this is an inactivation step mediated by MAPK, see Profiri and McCormick 1996 JBC 271(10):5871. I have not put this inactivation in this pathway so this molecule currently only represents a potential interaction point.

    Sos* acting as a Substrate in a reaction in  
    MAPK-bistability-fig1c Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1Grb2_bind_Sos*
  • MAPK-bistability
    -fig1c

    Accession No. : 35
  • Sos
    Pathway No. : 180
    0.025
    (uM^-1 s^-1)
    0.0168
    (s^-1)
    Kd(bf) = 0.672(uM)-Substrate
    Grb2
    Sos*

    Product
    Sos*.Grb2
      Same rates as Grb2_bind_Sos: Porfiri and McCormick JBC 271:10 pp 5871 1996 show that the binding is not affected by the phosphorylation.
    2dephosph_Sos
  • MAPK-bistability
    -fig1c

    Accession No. : 35
  • Sos
    Pathway No. : 180
    0.001
    (s^-1)
    0
    (s^-1)
    --Substrate
    Sos*

    Product
    Sos
      The best clue I have to these rates is from the time courses of the EGF activation, which is around 1 to 5 min. The dephosph would be expected to be of the same order, perhaps a bit longer. Lets use 0.002 which is about 8 min. Sep 17: The transient activation curve matches better with kf = 0.001



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.