NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for SHC*

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
SHC* participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000120

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • MAPK-bistability
    -fig1c
  • 35Network
    Shared_Object_MAPK-bistability-fig1c Sos PKC 
    MAPK PLA2 Ras 
    PDGFR 
    Model for figure 1c in Bhalla US et al. Science (2002) 297(5583):1018-23.
    The demo for this figure is available here. This synaptic signaling model is without the MKP-1 feedback, so it is bistable and remains so over long periods.

    SHC* acting as a Molecule in  
    MAPK-bistability-fig1c Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    SHC*
  • MAPK-bistability
    -fig1c

    Accession No. : 35
  • PDGFR
    Pathway No. : 185
    01000No
    Phosphorylated form of SHC. Binds to the SoS.Grb2 complex to give the activated GEF form upstream of Ras.

    SHC* acting as a Product of an Enzyme in  
    MAPK-bistability-fig1c Network
    Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    L.PDGFR  /
    phosph_Shc
  • MAPK-bistability
    -fig1c

    Accession No. : 35
  • PDGFR
    Pathway No. : 185
    0.8333330.054explicit E-S complexSubstrate
    SHC

    Product
    SHC*
    Rates from Okada et al JBC 270:35 pp 20737 1995 Km = 0.70 to 0.85 uM, Vmax = 4.4 to 5.0 pmol/min. Unfortunately the amount of enzyme is not known, the prep is only partially purified. Tau phosph is max within 30 sec, falls back within 20 min. Ref: Sasaoka et al JBC 269:51 32621 1994. Use k3 = 0.1 based on this tau. 27 Apr 2001: Lowered k3 to 0.05 to fix conc-effect of SHC phosph by PDGF. This gives results for downstream effects in agreement with other papers, e.g., the Brondello papers.

    SHC* acting as a Substrate in a reaction in  
    MAPK-bistability-fig1c Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1
  • Shc_bind_
    Sos.Grb2
  • MAPK-bistability
    -fig1c

    Accession No. : 35
  • Sos
    Pathway No. : 180
    0.5
    (uM^-1 s^-1)
    0.1
    (s^-1)
    Kd(bf) = 0.2(uM)-Substrate
    SHC*
    Sos.Grb2

    Product
    Shc*.Sos.Grb2
      Sasaoka et al JBC 269:51 pp 32621 1994, table on pg 32623 indicates that this pathway accounts for about 50% of the GEF activation. (88% - 39%). Error is large, about 20%. Fig 1 is most useful in constraining rates. Chook et al JBC 271:48 pp 30472, 1996 say that the Kd is 0.2 uM for Shc binding to EGFR. The Kd for Grb direct binding is 0.7, so we'll ignore it.
    2dephosph_Shc
  • MAPK-bistability
    -fig1c

    Accession No. : 35
  • PDGFR
    Pathway No. : 185
    0.01
    (s^-1)
    0
    (s^-1)
    --Substrate
    SHC*

    Product
    SHC
      Time course of decline of phosph is 20 min from Sasaoka et al 1994 JBC 269(51):32621. Part of this is the turnoff time of the EGFR itself. Lets assume a tau of 10 min for this dephosphorylation as a first pass. 27 Apr 2001: Dephosph too slow, shifts SHC balance over to phosphorylated form. Increase Kf to 0.01. This gives a reasonable overall time-course.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.