NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for craf-1

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
craf-1 participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1001110

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Ajay_Bhalla_
    2004_PKM_Tuning
  • 76Network
    PKC Shared_Object_Ajay_Bhalla_2004_PKM_tuning PLA2 
    PLCbeta Gq MAPK 
    Ras EGFR Sos 
    PLC_g CaMKII CaM 
    PP1 PP2B PKA 
    AC PKM 
    This model is taken from the Ajay SM, Bhalla US. Eur J Neurosci. 2004 Nov;20(10):2671-80. This is the reference feedforward model from Figure 8a.

    craf-1 acting as a Molecule in  
    Ajay_Bhalla_2004_PKM_Tuning Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    craf-1
  • Ajay_Bhalla_
    2004_PKM_Tuning

    Accession No. : 76
  • MAPK
    Pathway No. : 317
    0.51.5No
    Couldn't find any ref to the actual conc of craf-1 but I should try Strom et al Oncogene 5 pp 345 In line with the other kinases in the cascade, I estimate the conc to be 0.2 uM. To init we use 0.15, which is close to equil 16 May 2003: Changing to synaptic levels. Increasing 2.5 fold to 0.5 uM. See Mihaly et al 1991 Brain Res 547(2):309-14 and Morice et al 1999 Eur J Neurosci 11(6):1995-2006

    craf-1 acting as a Substrate for an Enzyme in  
    Ajay_Bhalla_2004_PKM_Tuning Network
    Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    PKC-active  /
    PKC-act-raf
  • Ajay_Bhalla_
    2004_PKM_Tuning

    Accession No. : 76
  • Shared_Object_
    Ajay_Bhalla_
    2004_PKM_tuning

    Pathway No. : 312
  • 20.000244explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
    Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC

    craf-1 acting as a Product of an Enzyme in  
    Ajay_Bhalla_2004_PKM_Tuning Network
    Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    PPhosphatase2A  /
    craf-deph
  • Ajay_Bhalla_
    2004_PKM_Tuning

    Accession No. : 76
  • Shared_Object_
    Ajay_Bhalla_
    2004_PKM_tuning

    Pathway No. : 312
  • 15.656864explicit E-S complexSubstrate
    craf-1*

    Product
    craf-1
    See parent PPhosphatase2A for parms

    craf-1 acting as a Substrate in a reaction in  
    Ajay_Bhalla_2004_PKM_Tuning Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2004_PKM_Tuning

    Accession No. : 76
  • Shared_Object_
    Ajay_Bhalla_
    2004_PKM_tuning

    Pathway No. : 312
  • 0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
    18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.