NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for G*GTP

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
G*GTP participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000032

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • NonOsc_Ca_
    IP3metabolism
  • 23Network
    MIPP CaMKII CaM 
    PKC IP3-3K CaRegulation 
    Gq PLCbeta 134_dephos 
    145_dephos IP4-system IHP-system 
    1345_dephos 
    This network models detailed metabolism of Ins(145)P3, integrated with GPCR mediated PLCbeta activation and Ca release by the InsP3 receptor in the neuron. The calcium response is non-oscillatory. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316.

    G*GTP acting as a Molecule in  
    NonOsc_Ca_IP3metabolism Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    G*GTP
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 23
  • Gq
    Pathway No. : 111
    01000No
    Activated G protein. Berstein et al indicate that about 20-40% of the total Gq alpha should bind GTP at steady stimulus.

    G*GTP acting as a Substrate in a reaction in  
    NonOsc_Ca_IP3metabolism Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1Inact-G
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 23
  • Gq
    Pathway No. : 111
    0.0133
    (s^-1)
    0
    (s^-1)
    --Substrate
    G*GTP

    Product
    G*GDP
      From Berstein et al JBC 267:12 8081-8088 1992, kcat for GTPase activity of Gq is only 0.8/min.
    2PLC-bind-Gq
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 23
  • PLCbeta
    Pathway No. : 112
    2.52
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.3968(uM)-Substrate
    G*GTP
    PLC

    Product
    PLC-Gq
      this binding does not produce active PLC. This step was needed to implement the described (Smrcka et al) increase in affinity for Ca by PLC once Gq was bound. The tempkin are the same as the binding step for Ca-PLC to Gq. Kd is constrained by detailed balance.
    3Act-PLC-by-Gq
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 23
  • PLCbeta
    Pathway No. : 112
    25.2
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.0397(uM)-Substrate
    G*GTP
    PLC-Ca

    Product
    PLC-Ca-Gq
      Affinity for Gq is > 20 nM (Smrcka et al Science251 804-807 1991) so [Gq].kf = kb so 40nM * 6e5 = kb/kf = 24e3 so kf = 4.2e-5, kb =1

    G*GTP acting as a Product in a reaction in  
    NonOsc_Ca_IP3metabolism Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1Basal-Act-G
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 23
  • Gq
    Pathway No. : 111
    0.0001
    (s^-1)
    0
    (uM^-1 s^-1)
    --Substrate
    G-GDP

    Product
    BetaGamma
    G*GTP
      This is the basal exchange of GTP for GDP. So slow as to be nearly negligible.
    2Activate-Gq
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 23
  • Gq
    Pathway No. : 111
    0.01
    (s^-1)
    0
    (uM^-2 s^-1)
    --Substrate
    Rec-Glu-Gq

    Product
    BetaGamma
    G*GTP
    Rec-Glu
      This reaction is the critical one for activation of Gq. It probably encapsulates multiple steps. In this approximation the receptor-ligand- Gprotein complex splits up into GTP.Galpha, rec.ligand complex, and Gbetagamma. There is a hidden step of exchange of GDP for GTP. The reaction does not take these into account since it is assumed that both GTP and GDP levels are tightly regulated by metabolic control. This is the kcat==k3 stage of the Rec-Glu ezymatic activation of Gq. From Berstein et al actiation is at .35 - 0.7/min From Fay et al Biochem 30 5066-5075 1991 kf = .01/sec From Nakamura et al J physiol Lond 474:1 35-41 1994 see time courses. Also (Berstein) 15-40% of gprot is in GTP-bound form on stim.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.