NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for G-GDP

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
G-GDP participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000031

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Osc_Ca_
    IP3metabolism
  • 24Network
    MIPP CaMKII CaM 
    PKC IP3-3K Gq 
    PLCbeta 134_dephos 145_dephos 
    IP4-system IHP-system 1345_dephos 
    CaRegulation Othmer-Tang-model 
    This network models an oscillatory calcium response to GPCR mediated PLCbeta activation, alongwith detailed InsP3 metabolism in the neuron. It differs from the NonOsc_Ca_IP3metabolism network in the CaRegulation module and in InsP3 receptor kinetics. Details of InsP3 receptor kinetics have been adapted from the Othmer-Tang model for oscillatory Ca dynamics. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316.

    G-GDP acting as a Molecule in  
    Osc_Ca_IP3metabolism Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    G-GDP
  • Osc_Ca_
    IP3metabolism

    Accession No. : 24
  • Gq
    Pathway No. : 125
    11000No
    This is the G-alpha-beta-gamma trimer in association with GDP. From Pang and Sternweis JBC 265:30 18707-12 1990 we get concentration estimate of 1.6 uM to 0.8 uM. I use 1 uM which is well within this range.

    G-GDP acting as a Substrate in a reaction in  
    Osc_Ca_IP3metabolism Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1Basal-Act-G
  • Osc_Ca_
    IP3metabolism

    Accession No. : 24
  • Gq
    Pathway No. : 125
    0.0001
    (s^-1)
    0
    (uM^-1 s^-1)
    --Substrate
    G-GDP

    Product
    BetaGamma
    G*GTP
      This is the basal exchange of GTP for GDP. So slow as to be nearly negligible.
    2Rec-Glu-bind-Gq
  • Osc_Ca_
    IP3metabolism

    Accession No. : 24
  • Gq
    Pathway No. : 125
    0.006
    (uM^-1 s^-1)
    0.0001
    (s^-1)
    Kd(bf) = 0.0167(uM)-Substrate
    G-GDP
    Rec-Glu

    Product
    Rec-Glu-Gq
      This is the k1-k2 equivalent for enzyme complex formation in the binding of Rec-Glu to Gq. See Fay et al Biochem 30 5066-5075 1991. Closer reading of Fay et al suggests that kb <= 0.0001, so kf = 1e-8 by detailed balance. This reaction appears to be neglible.
    3Rec-bind-Gq
  • Osc_Ca_
    IP3metabolism

    Accession No. : 24
  • Gq
    Pathway No. : 125
    0.6
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 1.6667(uM)-Substrate
    G-GDP
    mGluR

    Product
    Rec-Gq
      From Berstein et al 1992 JBC 267(12):8081-8088 we know that 15-40% of Gq binds, GTP_gamma_S. Also about 20-30% of Gq is bound to GTP. To get to these values the receptor-Gq amount should be similar. These rates are designed to give that steady state with a fast tau of 1 sec.

    G-GDP acting as a Product in a reaction in  
    Osc_Ca_IP3metabolism Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
    Trimerize-G
  • Osc_Ca_
    IP3metabolism

    Accession No. : 24
  • Gq
    Pathway No. : 125
    6
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    BetaGamma
    G*GDP

    Product
    G-GDP
    kf == kg3 = 1e-5 /cell/sec. As usual, there is no back-reaction kb = 0



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.