NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for Ca-leak-from-extracell

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
Ca-leak-from-extracell participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000000

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Osc_Ca_
    IP3metabolism
  • 24Network
    MIPP CaMKII CaM 
    PKC IP3-3K Gq 
    PLCbeta 134_dephos 145_dephos 
    IP4-system IHP-system 1345_dephos 
    CaRegulation Othmer-Tang-model 
    This network models an oscillatory calcium response to GPCR mediated PLCbeta activation, alongwith detailed InsP3 metabolism in the neuron. It differs from the NonOsc_Ca_IP3metabolism network in the CaRegulation module and in InsP3 receptor kinetics. Details of InsP3 receptor kinetics have been adapted from the Othmer-Tang model for oscillatory Ca dynamics. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316.

    Ca-leak-from-extracell acting as a Molecule in  
    Osc_Ca_IP3metabolism Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    Ca-leak-from-extracell
  • Osc_Ca_
    IP3metabolism

    Accession No. : 24
  • CaRegulation
    Pathway No. : 132
    0.00081000No
    This represents the pool of Ca leak channels. The conc gradient is so large that this pool needs only small number of molecules. For an equilibrium at 0.1 uM we need flow of 36e3/sec. With a permeability of 0.01 and a conc gradient of 4mM->0.1 uM (4e4) we get flux = N * perm * g rad => N = 36e3 / (1e-2 * 4e3) = 900 if flux = 20e3, N =500, which is what we use. This works out to a concentration of 0.83 nM.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.