NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for capacitive_Ca_entry*

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
capacitive_Ca_entry* participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000010

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Osc_Ca_
    IP3metabolism
  • 24Network
    MIPP CaMKII CaM 
    PKC IP3-3K Gq 
    PLCbeta 134_dephos 145_dephos 
    IP4-system IHP-system 1345_dephos 
    CaRegulation Othmer-Tang-model 
    This network models an oscillatory calcium response to GPCR mediated PLCbeta activation, alongwith detailed InsP3 metabolism in the neuron. It differs from the NonOsc_Ca_IP3metabolism network in the CaRegulation module and in InsP3 receptor kinetics. Details of InsP3 receptor kinetics have been adapted from the Othmer-Tang model for oscillatory Ca dynamics. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316.

    capacitive_Ca_entry* acting as a Molecule in  
    Osc_Ca_IP3metabolism Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    capacitive_Ca_entry*
  • Osc_Ca_
    IP3metabolism

    Accession No. : 24
  • CaRegulation
    Pathway No. : 132
    0.011000No
    This mechanism has taken a while to be more tightly confirmed as probably being the TRP channel. The channel is implemented to match experimental observations about capacitative Ca entry. Levels are unchanged from the CaReg model used to generate non-oscillatory Ca response in the IP3 metabolism network.

    capacitive_Ca_entry* acting as a Substrate in a reaction in  
    Osc_Ca_IP3metabolism Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
  • inactivate_cap_
    Ca
  • Osc_Ca_
    IP3metabolism

    Accession No. : 24
  • CaRegulation
    Pathway No. : 132
    0
    (#^-2 s^-1)
    10
    (s^-1)
    Not applicable**-Substrate
    Ca-sequester
    Ca-sequester
  • capacitive_Ca_
    entry*


    Product
    inact_cap_entry
  • For non-oscillatory Ca dynamics Kd was set at 3 uM. This did not allow for Ca oscillations characteristic of the Othmer-Tang model. The rates here are constrained solely by the need to generate Othmer-Tang type Ca oscillations.
    ** This is a trasport reation between compartments of different volumes. Therefore Kd is not applicable. Please Note Kf, Kb units are in number of molecules instead of concentration



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.