NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for PLC-Ca-Gq

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
PLC-Ca-Gq participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1010012

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Synaptic_
    Network
  • 16Network
    Shared_Object_Synaptic_Network PKC PLA2 
    PLCbeta Gq MAPK 
    Ras EGFR Sos 
    PLC_g CaMKII CaM 
    PP1 PP2B PKA 
    AC CaRegulation 
    This model is an annotated version of the synaptic signaling network.
    The primary reference is Bhalla US and Iyengar R. Science (1999) 283(5400):381-7 but several of the model pathways have been updated.
    Bhalla US Biophys J. 2002 Aug;83(2):740-52
    Bhalla US J Comput Neurosci. 2002 Jul-Aug;13(1):49-62

    PLC-Ca-Gq acting as a Molecule in  
    Synaptic_Network Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    PLC-Ca-Gq
  • Synaptic_
    Network

    Accession No. : 16
  • PLCbeta
    Pathway No. : 73
    01000No
    This should really be labelled Ca.GTP.Gq_alpha.PLC This is the activated form of the enzyme.

    PLC-Ca-Gq acting as an Enzyme in  
    Synaptic_Network Network
    Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    PLC-Ca-Gq /
    PLCb-Ca-Gq
  • Synaptic_
    Network

    Accession No. : 16
  • PLCbeta
    Pathway No. : 73
    5484explicit E-S complexSubstrate
    PIP2

    Product
    DAG
    IP3
    From Sternweis et al, Phil Trans R Soc Lond 1992, and the values from other refs eg Homma et al JBC 263(14) pp6592 1988 match. In this model I have rather low values for PIP2. The Km values are low to match. Sternweis mentions a 5 uM Km which is what I use here, but the Homma paper suggests about 20x higher Km, which would also fit with 20x higher PIP2. So that parameter, though it is off, cancels out and the overall rate would be the same. Vmax is about 23 umol/min/mg at high Ca from Sternweis or about 60/sec. This model value is a little lower than that.

    PLC-Ca-Gq acting as a Substrate in a reaction in  
    Synaptic_Network Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
    Inact-PLC-Gq
  • Synaptic_
    Network

    Accession No. : 16
  • PLCbeta
    Pathway No. : 73
    0.0133
    (s^-1)
    0
    (uM^-1 s^-1)
    --Substrate
    PLC-Ca-Gq

    Product
    G*GDP
    PLC-Ca
    This process is assumed to be directly caused by the inactivation of the G*GTP to G*GDP. Hence, kf = .013 /sec = 0.8/min, same as the rate for Inact-G. kb = 0 since this is irreversible. We may be interested in studying the role of PLC as a GAP. If so, the kf would be faster here than in Inact-G

    PLC-Ca-Gq acting as a Product in a reaction in  
    Synaptic_Network Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1Act-PLC-by-Gq
  • Synaptic_
    Network

    Accession No. : 16
  • PLCbeta
    Pathway No. : 73
    25.2
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.0397(uM)-Substrate
    G*GTP
    PLC-Ca

    Product
    PLC-Ca-Gq
      Affinity for Gq is > 20 nM (Smrcka et al Science251 804-807 1991) so [Gq].kf = kb so 40nM * 6e5 = kb/kf = 24e3 so kf = 4.2e-5, kb =1
    2PLC-Gq-bind-Ca
  • Synaptic_
    Network

    Accession No. : 16
  • PLCbeta
    Pathway No. : 73
    30
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.0333(uM)-Substrate
    Ca
    PLC-Gq

    Product
    PLC-Ca-Gq
      this step has a high affinity of 0.1 uM for Ca, from Smrcka et al 1991 Science 251:804-807 so kf /kb = 1/6e4 = 1.666e-5:1. See the Act-PLC-by-Gq reaction. Raised kf to 5e-5 based on match to conc-eff curves from Smrcka et al.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.