NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for PP1-active

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
PP1-active participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1050011

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Synaptic_
    Network
  • 16Network
    Shared_Object_Synaptic_Network PKC PLA2 
    PLCbeta Gq MAPK 
    Ras EGFR Sos 
    PLC_g CaMKII CaM 
    PP1 PP2B PKA 
    AC CaRegulation 
    This model is an annotated version of the synaptic signaling network.
    The primary reference is Bhalla US and Iyengar R. Science (1999) 283(5400):381-7 but several of the model pathways have been updated.
    Bhalla US Biophys J. 2002 Aug;83(2):740-52
    Bhalla US J Comput Neurosci. 2002 Jul-Aug;13(1):49-62

    PP1-active acting as a Molecule in  
    Synaptic_Network Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    PP1-active
  • Synaptic_
    Network

    Accession No. : 16
  • Shared_Object_
    Synaptic_
    Network

    Pathway No. : 70
  • 1.81000No
    Cohen et al Meth Enz 159 390-408 is main source of info concentration of enzyme = 1.8 uM

    PP1-active acting as an Enzyme in  
    Synaptic_Network Network
     Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    1PP1-active /
    Deph-thr286
  • Synaptic_
    Network

    Accession No. : 16
  • Shared_Object_
    Synaptic_
    Network

    Pathway No. : 70
  • 5.099070.354explicit E-S complexSubstrate
  • CaMKII-thr286*-C
    aM


    Product
    CaMKII-CaM
  •     The rates are from Stralfors et al Eur J Biochem 149 295-303 giving Vmax = 5.7 umol/min giving k3 = 3.5/sec and k2 = 14. Foulkes et al Eur J Biochem 132 309-313 1983 give Km = 5.1 uM so k1 becomes 5.72e-6 Simonelli 1984 (Grad Thesis, CUNY) showed that other substrates are about 1/10 rate of phosphorylase a, so we reduce k1,k2,k3 by 10 to 5.72e-7, 1.4, 0.35. This gives the final Km of 5.1, and Vmax of 0.35/sec.
    2PP1-active /
    Deph-thr305
  • Synaptic_
    Network

    Accession No. : 16
  • Shared_Object_
    Synaptic_
    Network

    Pathway No. : 70
  • 5.099070.354explicit E-S complexSubstrate
    CaMKII***

    Product
    CaMKII-thr286
        Dephosphorylation kinetics are assumed to be the same for all phosphorylation sites on CaMKII. The rates are from Stralfors et al Eur J Biochem 149 295-303 giving Vmax = 5.7 umol/min giving k3 = 3.5/sec and k2 = 14. Foulkes et al Eur J Biochem 132 309-313 1983 give Km = 5.1 uM so k1 becomes 5.72e-6 Simonelli 1984 (Grad Thesis, CUNY) showed that other substrates are about 1/10 rate of phosphorylase a, so we reduce k1,k2,k3 by 10 to 5.72e-7, 1.4, 0.35. This gives the final Km of 5.1, and Vmax of 0.35/sec.
    3PP1-active /
    Deph-thr306
  • Synaptic_
    Network

    Accession No. : 16
  • Shared_Object_
    Synaptic_
    Network

    Pathway No. : 70
  • 5.099070.354explicit E-S complexSubstrate
    CaMK-thr306

    Product
    CaMKII
        Dephosphorylation kinetics are assumed to be the same for all phosphorylation sites on CaMKII. The rates are from Stralfors et al Eur J Biochem 149 295-303 giving Vmax = 5.7 umol/min giving k3 = 3.5/sec and k2 = 14. Foulkes et al Eur J Biochem 132 309-313 1983 give Km = 5.1 uM so k1 becomes 5.72e-6 Simonelli 1984 (Grad Thesis, CUNY) showed that other substrates are about 1/10 rate of phosphorylase a, so we reduce k1,k2,k3 by 10 to 5.72e-7, 1.4, 0.35. This gives the final Km of 5.1, and Vmax of 0.35/sec.
    4PP1-active /
    Deph-thr286c
  • Synaptic_
    Network

    Accession No. : 16
  • Shared_Object_
    Synaptic_
    Network

    Pathway No. : 70
  • 5.099070.354explicit E-S complexSubstrate
    CaMKII***

    Product
    CaMK-thr306
        Dephosphorylation kinetics are assumed to be the same for all phosphorylation sites on CaMKII. The rates are from Stralfors et al Eur J Biochem 149 295-303 giving Vmax = 5.7 umol/min giving k3 = 3.5/sec and k2 = 14. Foulkes et al Eur J Biochem 132 309-313 1983 give Km = 5.1 uM so k1 becomes 5.72e-6 Simonelli 1984 (Grad Thesis, CUNY) showed that other substrates are about 1/10 rate of phosphorylase a, so we reduce k1,k2,k3 by 10 to 5.72e-7, 1.4, 0.35. This gives the final Km of 5.1, and Vmax of 0.35/sec.
    5PP1-active /
    Deph_thr286b
  • Synaptic_
    Network

    Accession No. : 16
  • Shared_Object_
    Synaptic_
    Network

    Pathway No. : 70
  • 5.099070.354explicit E-S complexSubstrate
    CaMKII-thr286

    Product
    CaMKII
        Rates are assumed to be the same for all phosphorylation sites on CaMKII. The rates are from Stralfors et al Eur J Biochem 149 295-303 giving Vmax = 5.7 umol/min giving k3 = 3.5/sec and k2 = 14. Foulkes et al Eur J Biochem 132 309-313 1983 give Km = 5.1 uM so k1 becomes 5.72e-6 Simonelli 1984 (Grad Thesis, CUNY) showed that other substrates are about 1/10 rate of phosphorylase a, so we reduce k1,k2,k3 by 10 to 5.72e-7, 1.4, 0.35. This gives the final Km of 5.1, and Vmax of 0.35/sec.

    PP1-active acting as a Substrate in a reaction in  
    Synaptic_Network Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
    Inact-PP1
  • Synaptic_
    Network

    Accession No. : 16
  • PP1
    Pathway No. : 82
    499.98
    (uM^-1 s^-1)
    0.1
    (s^-1)
    Kd(bf) = 0.0002(uM)-Substrate
    I1*
    PP1-active

    Product
    PP1-I1*
    K inhib = 1nM from Cohen Ann Rev Bioch 1989, 4 nM from Foukes et al Assume 2 nM. kf /kb = 8.333e-4 The Kd used here is 0.2 nM. This is small, but unlikely to matter much as the affinity is so strong that the reaction will be all the way forward in either case. Tau < 1 min for inhibition. Stralfors 1985 Eur J Biochem 149:295-303 fig 8 pg 201.

    PP1-active acting as a Product in a reaction in  
    Synaptic_Network Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
    dissoc-PP1-I1
  • Synaptic_
    Network

    Accession No. : 16
  • PP1
    Pathway No. : 82
    1
    (s^-1)
    0
    (uM^-1 s^-1)
    --Substrate
    PP1-I1

    Product
    I1
    PP1-active
    Assumption is that the affinity of the unphosphorylated form of I1 for PP1 is extremely weak and that the reaction is essentially all the way forward. The tau is fast at 1 sec.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.