|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for CycA_Kip1 | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Mammalian_cell_ cycle | 85 | Network | Growth, CELLDIV, Rb_grp, IE_GRP, CycB_Grp, Cdc20_Grp, Cdh1_grp, E2F, CycA_Grp, CycE_grp, Early_Response_Genes, Delayed_Response_Genes, CycD_Grp | This is a fairly complete mass-action reimplementation of the Novak and Tyson mammalian cell cycle model. It is inexact on two counts. First, it replaces many rather abstracted equations with mass action and Michaelis-Menten forms of enzymes. Second, it does not handle the halving of cellular volume at the division point. Within these limitations, the model does most of what the original paper shows including oscillation of the relevant molecules. |
CycA_Kip1 acting as a Molecule in Mammalian_cell_cycle Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | CycA_Kip1 | Mammalian_cell_ cycle Accession No. : 85 | CycA_Grp Pathway No. : 1077 | 0 | 200 | No |
CycA_Kip1 acting as a Summed Molecule in Mammalian_cell_cycle Network
CycA_Kip1 acting as a Substrate for an Enzyme in Mammalian_cell_cycle Network
| Enzyme Molecule / Enzyme Activity | Accession Name | Pathway Name | Km (uM) | kcat (s^-1) | Ratio | Enzyme Type | Reagents | 1 | CycE / Ak6_etaE | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 10.0002 | 500 | 4 | explicit E-S complex | Substrate CycA_Kip1
Product CycA degraded
| | Rate = V6 * [CycD_Kip1]. 6 Apr 2005. Rates were k1 = 500, k2 = 10, k3 = 1 in explicit E.S reaction form. Changed to MM as Km was too low. New values: Km = 10 kcat = Km * k6 * etaE = 500. | 2 | CycA / Ak6_etaA | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 10.0002 | 500 | 4 | explicit E-S complex | Substrate CycA_Kip1
Product CycA degraded
| | See Ak6_etaE | 3 | CycB / Ak6_etaB | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 9.99992 | 1000 | 4 | explicit E-S complex | Substrate CycA_Kip1
Product CycA degraded
| | See Ak6_etaE | 4 | Cdc20 / Cdc20_deg_CycA_ Kip1
| Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 10 | 200 | 4 | explicit E-S complex | Substrate CycA_Kip1
Product Kip1 degraded
| | Rate comes in as k30 = 20 Same rate as for CycA alone. Rate = [Cdc20]*[CycA_Kip1] * k30. To put in MM form: Rate = [Cdc20]*[CycA_Kip1] * kcat / (Km + [CycA_Kip1]) where kcat = k30 * Km and Km >> [CycA_Kip1]. Put Km = 1000, so kcat = 20000 Similar to CycA alone, we instead get k2 = 10, k3 = 1, so k1 = 200. 19 Apr 2005: Go back to MM form because of low Km. Let Km = 10, then kcat = Km * k30 = 200. |
CycA_Kip1 acting as a Substrate in a reaction in Mammalian_cell_cycle Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
CycA_Kip1 acting as a Product in a reaction in Mammalian_cell_cycle Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | k25 | Mammalian_cell_ cycle Accession No. : 85 | CycA_Grp Pathway No. : 1077 | 999.996 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 0.01(uM) | - | Substrate CycA Kip1
Product CycA_Kip1
|
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|