NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Accession Type:
Network
Differential syn
thesis of mRNA
Shared Object_
Differential syn
thesis of mRNA
 Molecule
 Enzyme
 Reaction
compartment_1compartment_1
compartment_2compartment_2

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Reaction List for pathway Shared Object_Differential synthesis of mRNA (Pathway Number 1115)

Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reactions is not considered.
  Name KfKbKdtauSubstrateProduct
1 Autophos_TrKBkf
(s^-1)
0
(s^-1)
--BDNF_TrkB2_clx
  • BDNF_TrkB2_
    star_clx

  •  
    2 bg_dash_act_
    dash_GEF
    kf
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.1667(uM)-inact_dash_GEF
    BetaGamma
  • GEF_dash_Gprot_
    dash_bg

  •   SoS/GEF is present at 50 nM ie 3e4/cell. BetaGamma maxes out at 9e4. Assume we have 1/3 of the GEF active when the BetaGamma is 1.5e4. so 1e4 * kb = 2e4 * 1.5e4 * kf, so kf/kb = 3e-5. The rate of this equil should be reasonably fast, say 1/sec
    3 B_dash_Raf_
    bind_Rap1GTP
    kf
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.0083(uM)-Rap1GTP
    bRaf
    bRaf_Rap1GTP
     
    4 C1_dash_bindingkf
    (uM^-1 s^-1)
    0.186
    (s^-1)
    Kd(bf) = 0.0002(uM)-PKA_dash_active
    R2
    R2C1
      PMID: 11110787
    5 C2_dash_bindingkf
    (uM^-1 s^-1)
    0.186
    (s^-1)
    Kd(bf) = 0.0002(uM)-PKA_dash_active
    R2C1
    R2C2
     
    6 C3G_bind_CRKkf
    (uM^-1 s^-1)
    0.002
    (s^-1)
    Kd(bf) = 0.002(uM)-C3G
    CRK
    CRK_C3G
     
    7 CaMCa3_dash_
    bind_dash_CaNAB
    kf
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.4468(uM)-CaM_dash_Ca3
    CaNAB_dash_Ca4
  • CaMCa3_dash_
    CaNAB

  •  
    8 CaMCa4_dash_
    bind_dash_CaNAB
    kf
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.0017(uM)-CaM_dash_Ca4
    CaNAB_dash_Ca4
  • CaMCa4_dash_
    CaNAB

  •  
    9 CaMKIVcomplxkf
    (uM^-1 s^-1)
    0.01
    (s^-1)
    Kd(bf) = 0.7508(uM)-CaM_dash_Ca4
    CaMKIVc
    CaMKIV_CaM_Ca_c
      Kd from PMID: 9705275
    10 CaMKIVimportkf
    (s^-1)
    0.0026
    (s^-1)
    Keq = 2.8778(uM)285.714sec
  • pCaMKIV_CaM_Ca_
    c

  • pCaMKIV_CaM_Ca_
    c

  •  
    11 CaMKKcomplxkf
    (uM^-1 s^-1)
    0.02
    (s^-1)
    Kd(bf) = 0.0049(uM)-CaM_dash_Ca4
    CaMKK_c
    CaMKK_CaM_Ca_c
      Kd from PMID: 9705275
    12 cAMP_dash_bind_
    dash_site_dash_
    A1
    kf
    (uM^-1 s^-1)
    110
    (s^-1)
    Kd(bf) = 1.4667(uM)-R2C2_dash_cAMP2
    cAMP
    R2C2_dash_cAMP3
     
    13 cAMP_dash_bind_
    dash_site_dash_
    A2
    kf
    (uM^-1 s^-1)
    32.5
    (s^-1)
    Kd(bf) = 0.4333(uM)-R2C2_dash_cAMP3
    cAMP
    R2C2_dash_cAMP4
     
    14 cAMP_dash_bind_
    dash_site_dash_
    B1
    kf
    (uM^-1 s^-1)
    33
    (s^-1)
    Kd(bf) = 0.6111(uM)-R2C2
    cAMP
    R2C2_dash_cAMP
     
    15 cAMP_dash_bind_
    dash_site_dash_
    B2
    kf
    (uM^-1 s^-1)
    33
    (s^-1)
    Kd(bf) = 0.6111(uM)-R2C2_dash_cAMP
    cAMP
    R2C2_dash_cAMP2
     
    16 CaM_bind_PDE1kf
    (uM^-1 s^-1)
    5
    (s^-1)
    Kd(bf) = 0.0069(uM)-CaM_dash_Ca4
    PDE1
    CaM.PDE1
     
    17 CaM_dash_bind_
    dash_AC1
    kf
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.02(uM)-CaM_dash_Ca4
    AC1
    AC1_dash_CaM
     
    18 CaM_dash_bind_
    dash_Ca
    kf
    (uM^-1 s^-1)
    8.4853
    (s^-1)
    Kd(bf) = 1.0001(uM)-CaM
    Ca
    CaM_dash_Ca
      Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !) 19 May 2006. Splitting the old CaM-TR2-bind-Ca reaction into two steps, each binding 1 Ca. This improves numerical stability and is conceptually better too. Overall rates are the same, so each kf and kb is the square root of the earlier ones. So kf = 1.125e-4, kb = 8.4853
    19 CaM_dash_bind_
    dash_GEF
    kf
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.0167(uM)-CaM_dash_Ca4
    inact_dash_GEF
    CaM_dash_GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    20 CaM_dash_Ca2_
    dash_bind_dash_
    Ca
    kf
    (uM^-1 s^-1)
    10
    (s^-1)
    Kd(bf) = 2.7777(uM)-CaM_dash_Ca2
    Ca
    CaM_dash_Ca3
      K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10
    21 CaM_dash_Ca2_
    dash_bind_dash_
    CaNAB
    kf
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 4.1667(uM)-CaM_dash_Ca2
    CaNAB_dash_Ca4
  • CaMCa2_dash_
    CANAB

  •   Disabled. See notes for PP2B7.g
    22 CaM_dash_Ca3_
    dash_bind_dash_
    Ca
    kf
    (uM^-1 s^-1)
    10
    (s^-1)
    Kd(bf) = 21.5051(uM)-CaM_dash_Ca3
    Ca
    CaM_dash_Ca4
      Use K3 = 21.5 uM here from Stemmer and Klee table 3. kb/kf =21.5 * 6e5 so kf = 7.75e-7, kb = 10
    23 CaM_dash_Ca_
    dash_bind_dash_
    Ca
    kf
    (uM^-1 s^-1)
    8.4853
    (s^-1)
    Kd(bf) = 1.0001(uM)-CaM_dash_Ca
    Ca
    CaM_dash_Ca2
      Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !) 19 May 2006. Splitting the old CaM-TR2-bind-Ca reaction into two steps, each binding 1 Ca. This improves numerical stability and is conceptually better too. Overall rates are the same, so each kf and kb is the square root of the earlier ones. So kf = 1.125e-4, kb = 8.4853
    24 Ca_dash_bind_
    dash_CaNAB
    kf
    (uM^-2 s^-1)
    1
    (s^-1)
    Kd(af) = 0.0003(uM)-Ca
    Ca
    CaNAB
    CaNAB_dash_Ca2
      going on the experience with CaM, we put the fast (high affinity) sites first. We only know (Stemmer and Klee) that the affinity is < 70 nM. Assuming 10 nM at first, we get kf = 2.78e-8, kb = 1. Try 20 nM. kf = 7e-9, kb = 1 
    25 Ca_dash_bind_
    dash_CaNAB_
    dash_Ca2
    kf
    (uM^-2 s^-1)
    1
    (s^-1)
    Kd(af) = 0.0167(uM)-Ca
    Ca
    CaNAB_dash_Ca2
    CaNAB_dash_Ca4
      This process is probably much more complicated and involves CaM. However, as I can't find detailed info I am bundling this into a single step. Based on Steemer and Klee pg 6863, the Kact is 0.5 uM. kf/kb = 1/(0.5 * 6e5)^2 = 1.11e-11
    26 Ca_stochkf
    (s^-1)
    100
    (s^-1)
    Keq = 1(uM)0.005secCa_input
    Ca
     
    27 Cbl_dephosphokf
    (s^-1)
    0.01
    (s^-1)
    Keq = 0.001(uM)0.1secCbl_star
    Cbl
     
    28 CRK_C3G_Cbl_
    star
    kf
    (uM^-1 s^-1)
    0.2
    (s^-1)
    Kd(bf) = 0.2(uM)-CRK_C3G
    Cbl_star
  • CRK_C3G_Cbl_
    star_clx

  •  
    29 dephosph_dash_
    AC2
    kf
    (s^-1)
    0
    (s^-1)
    --AC2_star
    AC2
     
    30 dephosph_dash_
    GAP
    kf
    (s^-1)
    0
    (s^-1)
    --GAP_star
    GAP
      Assume a reasonably good rate for dephosphorylating it, 1/sec
    31 dephosph_dash_
    GEF
    kf
    (s^-1)
    0
    (s^-1)
    --GEF_star
    inact_dash_GEF
     
    32 dephosph_dash_
    inact_dash_GEF_
    star
    kf
    (s^-1)
    0
    (s^-1)
    --
  • inact_dash_GEF_
    star

  • inact_dash_GEF
     
    33 dephosph_dash_
    PDE
    kf
    (s^-1)
    0
    (s^-1)
    --
  • cAMP_dash_PDE_
    star

  • cAMP_dash_PDE
     
    34 dephosph_Soskf
    (s^-1)
    0.1
    (s^-1)
    Keq = 100(uM)9.901secSos_star
    Sos
     
    35 Dimeriz_TrKBkf
    (uM^-1 s^-1)
    0.02
    (s^-1)
    Kd(bf) = 0.02(uM)-TrKB
    BDNF_TrkB_clx
    BDNF_TrkB2_clx
     
    36 dissociationkf
    (s^-1)
    0.0001
    (uM^-1 s^-1)
    Kd(cb) = 0.2(uM)-R2_dash_cAMP4
    R2
    cAMP
     
    37 dissoc_dash_
    PP1_dash_I1
    kf
    (s^-1)
    0
    (uM^-1 s^-1)
    --PP1_dash_I1
    I1
  • PP1_dash_
    active_c

  •   Let us assume that the equil in this case is very far over to the right. This is probably safe.
    38 Grb2_bind_Soskf
    (uM^-1 s^-1)
    0.0168
    (s^-1)
    Kd(bf) = 0.0672(uM)-Grb2
    Sos
    Sos.Grb2
     
    39 Grb2_bind_Sos_
    star
    kf
    (uM^-1 s^-1)
    0.0168
    (s^-1)
    Kd(bf) = 0.672(uM)-Grb2
    Sos_star
    Sos_star.Grb2
     
    40 Inact_dash_PP1kf
    (uM^-1 s^-1)
    0.1
    (s^-1)
    Kd(bf) = 0.0002(uM)-I1_star
  • PP1_dash_
    active_c

  • PP1_dash_I1_
    star

  •   K inhib = 1nM from Cohen Ann Rev Bioch 1989, 4 nM from Foukes et al Assume 2 nM. kf /kb = 8.333e-4
    41 inhib_dash_PKAkf
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.0167(uM)-PKA_dash_active
  • PKA_dash_
    inhibitor

  • inhibited_dash_
    PKA

  •  
    42 intrinsic_
    GTPase
    kf
    (s^-1)
    0
    (s^-1)
    --Rap1GTP
    Rap1GDP
     
    43 Ligand_bindingkf
    (uM^-1 s^-1)
    0.05
    (s^-1)
    Kd(bf) = 0.05(uM)-TrKB
    BDNF
    BDNF_TrkB_clx
     
    44 LR_cyclingkf
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500sec
  • Int_BDNF_TrKB2_
    star_clx

  • TrKB
     
    45 LR_Internalizekf
    (s^-1)
    0
    (uM^-1 s^-1)
    --
  • BDNF_TrkB2_
    star_clx

  • Int_BDNF_TrKB2_
    star_clx

  • Int_BDNF_TrKB2_
    star_clx

  •  
    46 PKAimportkf
    (s^-1)
    0.0005
    (s^-1)
    Keq = 1.5164(uM)1250secPKA_dash_active
    PKA_dash_active
     
    47 PLC_g_star_
    dephospho
    kf
    (s^-1)
    0
    (s^-1)
    --PLC_g_star
    PLC_g
     
    48 PP1_transportkf
    (s^-1)
    0.0011
    (s^-1)
    Keq = 0.37(uM)243.902secPP1_dash_I1
    PP1_dash_I1
     
    49 Ras_dash_act_
    dash_braf
    kf
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.0083(uM)-bRaf
    GTP_dash_Ras
  • braf_dash_GTP_
    dash_Ras

  •  
    50 Ras_dash_act_
    dash_craf
    kf
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-
  • craf_dash_1_
    star

    GTP_dash_Ras
  • Raf_star_dash_
    GTP_dash_Ras

  •   Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    51 Ras_dash_act_
    dash_unphosph_
    dash_raf
    kf
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.1667(uM)-craf_dash_1
    GTP_dash_Ras
  • Raf_dash_GTP_
    dash_Ras

  •   18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    52 Ras_dash_
    intrinsic_dash_
    GTPase
    kf
    (s^-1)
    0
    (s^-1)
    --GTP_dash_Ras
    GDP_dash_Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    53 Release_dash_C1kf
    (s^-1)
    18
    (uM^-1 s^-1)
    Kd(cb) = 0.3(uM)-R2C2_dash_cAMP4
    PKA_dash_active
    R2C_dash_cAMP4
     
    54 Release_dash_C2kf
    (s^-1)
    18
    (uM^-1 s^-1)
    Kd(cb) = 0.3(uM)-R2C_dash_cAMP4
    PKA_dash_active
    R2_dash_cAMP4
     
    55 RSK_
    autophosphorylat
    ion
    kf
    (s^-1)
    10
    (s^-1)
    Keq = 100(uM)0.099secpRSK
    ppRSK
     
    56 Shc_bind_
    Sos.Grb2
    kf
    (uM^-1 s^-1)
    0.1
    (s^-1)
    Kd(bf) = 0.02(uM)-Sos.Grb2
    Shc_star
  • Shc_
    star.Sos.Grb2

  •  
    57 Shc_star_
    dephospho
    kf
    (s^-1)
    0
    (s^-1)
    --Shc_star
    Shc
     
    58 SIK2_dephospkf
    (s^-1)
    0
    (s^-1)
    --SIK2_star
    SIK2
     
    59 Src_dephosphokf
    (s^-1)
    0.1
    (s^-1)
    Keq = 0.001(uM)0.01secSrc_star
    Src
     
    60 TORC1_importkf
    (s^-1)
    0.0004
    (s^-1)
    Keq = 0.037(uM)96.154secTORC1c
    TORC1c
     
    61 transport_MAPKkf
    (s^-1)
    0.0011
    (s^-1)
    Keq = 11.1(uM)833.333secMAPK_star
    MAPK_star
     
    62 transport_RSK2nkf
    (s^-1)
    0.0019
    (s^-1)
    Keq = 1.85(uM)344.828secactive_RSK2
    active_RSK2
     


    Pathway Details   Molecule List   Enzyme List  Reaction List  


    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.