|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for CaNAB-Ca2 | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
CaNAB-Ca2 acting as a Molecule in CaMKII_2003 Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | CaNAB-Ca2 | CaMKII_2003 Accession No. : 49 | PP2B Pathway No. : 205 | 0 | 1000 | No | |
CaNAB-Ca2 acting as a Substrate in a reaction in CaMKII_2003 Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | Ca-bind-CaNAB-Ca 2 | CaMKII_2003 Accession No. : 49 | PP2B Pathway No. : 205 | 3.6 (uM^-2 s^-1) | 1 (s^-1) | Kd(af) = 0.527(uM) | - | Substrate Ca Ca CaNAB-Ca2
Product CaNAB-Ca4
| This process is probably much more complicated and involves CaM. However, as I can't find detailed info I am bundling this into a single step. Based on Steemer and Klee pg 6863, the Kact is 0.5 uM. kf/kb = 1/(0.5 * 6e5)^2 = 1.11e-11 |
CaNAB-Ca2 acting as a Product in a reaction in CaMKII_2003 Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | Ca-bind-CaNAB | CaMKII_2003 Accession No. : 49 | PP2B Pathway No. : 205 | 10008 (uM^-2 s^-1) | 1 (s^-1) | Kd(af) = 0.01(uM) | - | Substrate Ca Ca CaNAB
Product CaNAB-Ca2
| going on the experience with CaM, we put the fast (high affinity) sites first. We only know (Stemmer and Klee) that the affinity is < 70 nM. Assuming 10 nM at first, we get kf = 2.78e-8, kb = 1. Try 20 nM. kf = 7e-9, kb = 1 |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|