NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for PLC-Ca

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
PLC-Ca participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1010012

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • MAPK_network_
    2003
  • 50Network
    Shared_Object_MAPK_network_2003 PKC PLA2 
    PLCbeta Gq MAPK 
    Ras EGFR Sos 
    PLC_g CaMKII CaM 
    PP1 PP2B PKA 
    AC 
    This is a network model of many pathways present at the neuronal synapse. The network has properties of temporal tuning as well as steady-state computational properties. In its default form the network is bistable.Bhalla US Biophys J. 2004 Aug;87(2):745-53

    PLC-Ca acting as a Molecule in  
    MAPK_network_2003 Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    PLC-Ca
  • MAPK_network_
    2003

    Accession No. : 50
  • PLCbeta
    Pathway No. : 209
    01000No

    PLC-Ca acting as an Enzyme in  
    MAPK_network_2003 Network
    Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    PLC-Ca /
    PLC-Ca
  • MAPK_network_
    2003

    Accession No. : 50
  • PLCbeta
    Pathway No. : 209
    19.8413104explicit E-S complexSubstrate
    PIP2

    Product
    DAG
    IP3
    From Sternweis et al Phil Trans R Soc Lond 1992, also matched by Homma et al. k1 = 1.5e-5, now 4.2e-6 k2 = 70/sec; now 40/sec k3 = 17.5/sec; now 10/sec Note that the wording in Sternweis et al is ambiguous re the Km.

    PLC-Ca acting as a Substrate in a reaction in  
    MAPK_network_2003 Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
    Act-PLC-by-Gq
  • MAPK_network_
    2003

    Accession No. : 50
  • PLCbeta
    Pathway No. : 209
    25.2
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.0397(uM)-Substrate
    G*GTP
    PLC-Ca

    Product
    PLC-Ca-Gq
    Affinity for Gq is > 20 nM (Smrcka et al Science251 804-807 1991) so [Gq].kf = kb so 40nM * 6e5 = kb/kf = 24e3 so kf = 4.2e-5, kb =1

    PLC-Ca acting as a Product in a reaction in  
    MAPK_network_2003 Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1Act-PLC-Ca
  • MAPK_network_
    2003

    Accession No. : 50
  • PLCbeta
    Pathway No. : 209
    3
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.3333(uM)-Substrate
    Ca
    PLC

    Product
    PLC-Ca
      Affinity for Ca = 1uM without AlF, 0.1 with: from Smrcka et al science 251 pp 804-807 1991 so [Ca].kf = kb so kb/kf = 1 * 6e5 = 1/1.66e-6 11 June 1996: Raised affinity to 5e-6 to maintain balance. See notes.
    2Inact-PLC-Gq
  • MAPK_network_
    2003

    Accession No. : 50
  • PLCbeta
    Pathway No. : 209
    0.0133
    (s^-1)
    0
    (uM^-1 s^-1)
    --Substrate
    PLC-Ca-Gq

    Product
    G*GDP
    PLC-Ca
      This process is assumed to be directly caused by the inactivation of the G*GTP to G*GDP. Hence, kf = .013 /sec = 0.8/min, same as the rate for Inact-G. kb = 0 since this is irreversible. We may be interested in studying the role of PLC as a GAP. If so, the kf would be faster here than in Inact-G



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.