|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for CheY | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Chemotaxis | 55 | Pathway | Chemotaxis | All parameters used are from the .BCT files for BCT1.1 provided by Matthew Levin from the Computational Biology Group in the Department of Zoology at the University of Cambridge.Bias does not reach 0.7, there is a lag in the response of bias to the 5 sec 1 uM Aspartate pulse as shown by Bray et al. Mol.Biol.Cell (1993) 4(5): 469-482. The June 2003 version of the BCT program is BCT4.3 and is available at the computational biology site of the Zoology department at Cambridge University. |
CheY acting as a Molecule in Chemotaxis Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | CheY | Chemotaxis Accession No. : 55 | Chemotaxis Pathway No. : 226 | 9.88 | 1.41 | No | CheY = 9.88e-06 M = 9.88 uM As per Signal 21 in 1SIG_B.BCT provided by Matthew Levin CheY = 8500 molecules per cell As per Enzyme entry 5 in 1ENZ.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482 |
CheY acting as a Substrate in a reaction in Chemotaxis Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | Phosphotransfer[ 1] | Chemotaxis Accession No. : 55 | Chemotaxis Pathway No. : 226 | 0.27 (uM^-1 s^-1) | 0 (uM^-1 s^-1) | - | - | Substrate CheAp CheY
Product CheA CheYp
| Phosphotransfer from CheAp to CheY Kf = 2 * 10e+05 /sec/M = 0.2 /sec/uM Kb = 0 /sec/M Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 2 pp.475 Reaction Scheme 5 |
CheY acting as a Product in a reaction in Chemotaxis Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | Autodephosphoryl ation[1] | Chemotaxis Accession No. : 55 | Chemotaxis Pathway No. : 226 | 0.037 (s^-1) | 0 (s^-1) | - | - | Substrate CheYp
Product CheY
| | Tar-CheW complex TW = 1.88e-06 M = 1.88 uM As per Signal entry 3 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482 | 2 | Dephosphorylatio n | Chemotaxis Accession No. : 55 | Chemotaxis Pathway No. : 226 | 0.5 (uM^-1 s^-1) | 0 (s^-1) | - | - | Substrate CheYp CheZ
Product CheY
| | Ni bound Tar Ni-Tar = 0 M As per Signal 4 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482 | 3 | Dephosphorylatio n[1] | Chemotaxis Accession No. : 55 | Chemotaxis Pathway No. : 226 | 99.9972 (uM^-1 s^-1) | 0 (s^-1) | - | - | Substrate CheYp TaWA
Product CheY
| | MYpYpYp = 4.47e-10 M = 4.47e-4 uM As per Signal 26 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482 |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|