|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for BetaGamma | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics |
BetaGamma participated as | Molecule | Sum total of | Enzyme | Substrate of an enzyme | Product of an enzyme | Substrate in Reaction | Product in Reaction | No. of occurrences | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | mRNA synthesis | 94 | Network | kinetics, compartment_1, compartment_2 | The model consists of three major pathways: Calcium-calmodulin dependent protein kinase IV (CaMKIV), Mitogen-activated protein kinase (MAPK) and Protein Phosphatase 1 (PP1). Each of these converged on CREB activation. We also modeled further interactions with Transducer of regulated CREB activity 1 (TORC1) and the protein kinase A (PKA) pathway. |
BetaGamma acting as a Molecule in mRNA synthesis Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | BetaGamma | mRNA synthesis Accession No. : 94 | kinetics Pathway No. : 1112 | 0 | 1000 | No | These exist in a nebulous sense in this model, basically only to balance the conservation equations. The details of their reassociation with G-GDP are not modeled Resting level =0.0094, stim level =.0236 from all42.g ish. |
BetaGamma acting as a Substrate in a reaction in mRNA synthesis Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | bg_dash_act_ dash_GEF | mRNA synthesis Accession No. : 94 | kinetics Pathway No. : 1112 | 6 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.1667(uM) | - | Substrate BetaGamma inact_dash_GEF
Product GEF_dash_Gprot_ dash_bg
| SoS/GEF is present at 50 nM ie 3e4/cell. BetaGamma maxes out at 9e4. Assume we have 1/3 of the GEF active when the BetaGamma is 1.5e4. so 1e4 * kb = 2e4 * 1.5e4 * kf, so kf/kb = 3e-5. The rate of this equil should be reasonably fast, say 1/sec |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|