NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for GAP

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
GAP participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1011001

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Differential syn
    thesis of mRNA
  • 95Network
    kinetics compartment_1 compartment_2 
    The model consists of three major pathways: Calcium-calmodulin dependent protein kinase IV (CaMKIV), Mitogen-activated protein kinase (MAPK) and Protein Phosphatase 1 (PP1). Each of these converged on CREB activation. We also modeled further interactions with Transducer of regulated CREB activity 1 (TORC1) and the protein kinase A (PKA) pathway.

    GAP acting as a Molecule in  
    Differential synthesis of mRNA Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    GAP
  • Differential syn
    thesis of mRNA

    Accession No. : 95
  • kinetics
    Pathway No. : 1115
    0.011000No
    GTPase-activating proteins. See Boguski and McCormick. Turn off Ras by helping to hydrolyze bound GTP. This one is probably NF1, ie., Neurofibromin as it is inhibited by AA and lipids, and expressed in neural cells. p120-GAP is also a possible candidate, but is less regulated. Both may exist at similar levels. See Eccleston et al JBC 268(36) pp27012-19 Level=.002 16 May 2003: Increased level to 0.0036, in line with other concentration raises at the synapse.

    GAP acting as an Enzyme in  
    Differential synthesis of mRNA Network
    Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    GAP /
  • GAP_dash_inact_
    dash_ras
  • Differential syn
    thesis of mRNA

    Accession No. : 95
  • kinetics
    Pathway No. : 1115
    1.0104104explicit E-S complexSubstrate
    GTP_dash_Ras

    Product
    GDP_dash_Ras
    From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.

    GAP acting as a Substrate for an Enzyme in  
    Differential synthesis of mRNA Network
    Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    PKC_dash_active  /
  • PKC_dash_inact_
    dash_GAP
  • Differential syn
    thesis of mRNA

    Accession No. : 95
  • kinetics
    Pathway No. : 1115
    3.333344explicit E-S complexSubstrate
    GAP

    Product
    GAP_star
    Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.

    GAP acting as a Product in a reaction in  
    Differential synthesis of mRNA Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
  • dephosph_dash_
    GAP
  • Differential syn
    thesis of mRNA

    Accession No. : 95
  • kinetics
    Pathway No. : 1115
    0.1
    (s^-1)
    0
    (s^-1)
    --Substrate
    GAP_star

    Product
    GAP
    Assume a reasonably good rate for dephosphorylating it, 1/sec



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.