| Name | Kf | Kb | Kd | tau | Substrate | Product |
1 |
Autophos_TrKB | 0.02 (s^-1) | 0 (s^-1) | - | - | BDNF_TrkB2_clx
| BDNF_TrkB2_ star_clx
|
| |
2 |
bg_dash_act_ dash_GEF | 6 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.1667(uM) | - | inact_dash_GEF BetaGamma
| GEF_dash_Gprot_ dash_bg
|
| SoS/GEF is present at 50 nM ie 3e4/cell. BetaGamma maxes out at 9e4. Assume we have 1/3 of the GEF active when the BetaGamma is 1.5e4. so 1e4 * kb = 2e4 * 1.5e4 * kf, so kf/kb = 3e-5. The rate of this equil should be reasonably fast, say 1/sec |
3 |
B_dash_Raf_ bind_Rap1GTP | 60 (uM^-1 s^-1) | 0.5 (s^-1) | Kd(bf) = 0.0083(uM) | - | Rap1GTP bRaf
| bRaf_Rap1GTP
|
| |
4 |
C1_dash_binding | 799.02 (uM^-1 s^-1) | 0.186 (s^-1) | Kd(bf) = 0.0002(uM) | - | PKA_dash_active R2
| R2C1
|
| PMID: 11110787 |
5 |
C2_dash_binding | 799.02 (uM^-1 s^-1) | 0.186 (s^-1) | Kd(bf) = 0.0002(uM) | - | PKA_dash_active R2C1
| R2C2
|
| |
6 |
C3G_bind_CRK | 1 (uM^-1 s^-1) | 0.002 (s^-1) | Kd(bf) = 0.002(uM) | - | C3G CRK
| CRK_C3G
|
| |
7 |
CaMCa3_dash_ bind_dash_CaNAB | 2.238 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.4468(uM) | - | CaM_dash_Ca3 CaNAB_dash_Ca4
| CaMCa3_dash_ CaNAB
|
| |
8 |
CaMCa4_dash_ bind_dash_CaNAB | 600 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.0017(uM) | - | CaM_dash_Ca4 CaNAB_dash_Ca4
| CaMCa4_dash_ CaNAB
|
| |
9 |
CaMKIVcomplx | 0.0133 (uM^-1 s^-1) | 0.01 (s^-1) | Kd(bf) = 0.7508(uM) | - | CaM_dash_Ca4 CaMKIVc
| CaMKIV_CaM_Ca_c
|
| Kd from PMID: 9705275 |
10 |
CaMKIVimport | 0.0009 (s^-1) | 0.0026 (s^-1) | Keq = 2.8778(uM) | 285.714sec | pCaMKIV_CaM_Ca_ c
| pCaMKIV_CaM_Ca_ c
|
| |
11 |
CaMKKcomplx | 4.05 (uM^-1 s^-1) | 0.02 (s^-1) | Kd(bf) = 0.0049(uM) | - | CaM_dash_Ca4 CaMKK_c
| CaMKK_CaM_Ca_c
|
| Kd from PMID: 9705275 |
12 |
cAMP_dash_bind_ dash_site_dash_ A1 | 75 (uM^-1 s^-1) | 110 (s^-1) | Kd(bf) = 1.4667(uM) | - | R2C2_dash_cAMP2 cAMP
| R2C2_dash_cAMP3
|
| |
13 |
cAMP_dash_bind_ dash_site_dash_ A2 | 75 (uM^-1 s^-1) | 32.5 (s^-1) | Kd(bf) = 0.4333(uM) | - | R2C2_dash_cAMP3 cAMP
| R2C2_dash_cAMP4
|
| |
14 |
cAMP_dash_bind_ dash_site_dash_ B1 | 54 (uM^-1 s^-1) | 33 (s^-1) | Kd(bf) = 0.6111(uM) | - | R2C2 cAMP
| R2C2_dash_cAMP
|
| |
15 |
cAMP_dash_bind_ dash_site_dash_ B2 | 54 (uM^-1 s^-1) | 33 (s^-1) | Kd(bf) = 0.6111(uM) | - | R2C2_dash_cAMP cAMP
| R2C2_dash_cAMP2
|
| |
16 |
CaM_bind_PDE1 | 720 (uM^-1 s^-1) | 5 (s^-1) | Kd(bf) = 0.0069(uM) | - | CaM_dash_Ca4 PDE1
| CaM.PDE1
|
| |
17 |
CaM_dash_bind_ dash_AC1 | 49.9998 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.02(uM) | - | CaM_dash_Ca4 AC1
| AC1_dash_CaM
|
| |
18 |
CaM_dash_bind_ dash_Ca | 8.4846 (uM^-1 s^-1) | 8.4853 (s^-1) | Kd(bf) = 1.0001(uM) | - | CaM Ca
| CaM_dash_Ca
|
| Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !) 19 May 2006. Splitting the old CaM-TR2-bind-Ca reaction into two steps, each binding 1 Ca. This improves numerical stability and is conceptually better too. Overall rates are the same, so each kf and kb is the square root of the earlier ones. So kf = 1.125e-4, kb = 8.4853 |
19 |
CaM_dash_bind_ dash_GEF | 60 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.0167(uM) | - | CaM_dash_Ca4 inact_dash_GEF
| CaM_dash_GEF
|
| We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995 |
20 |
CaM_dash_Ca2_ dash_bind_dash_ Ca | 3.6001 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7777(uM) | - | CaM_dash_Ca2 Ca
| CaM_dash_Ca3
|
| K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 |
21 |
CaM_dash_Ca2_ dash_bind_dash_ CaNAB | 0.24 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 4.1667(uM) | - | CaM_dash_Ca2 CaNAB_dash_Ca4
| CaMCa2_dash_ CANAB
|
| Disabled. See notes for PP2B7.g |
22 |
CaM_dash_Ca3_ dash_bind_dash_ Ca | 0.465 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 21.5051(uM) | - | CaM_dash_Ca3 Ca
| CaM_dash_Ca4
|
| Use K3 = 21.5 uM here from Stemmer and Klee table 3. kb/kf =21.5 * 6e5 so kf = 7.75e-7, kb = 10 |
23 |
CaM_dash_Ca_ dash_bind_dash_ Ca | 8.4846 (uM^-1 s^-1) | 8.4853 (s^-1) | Kd(bf) = 1.0001(uM) | - | CaM_dash_Ca Ca
| CaM_dash_Ca2
|
| Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !) 19 May 2006. Splitting the old CaM-TR2-bind-Ca reaction into two steps, each binding 1 Ca. This improves numerical stability and is conceptually better too. Overall rates are the same, so each kf and kb is the square root of the earlier ones. So kf = 1.125e-4, kb = 8.4853 |
24 |
Ca_dash_bind_ dash_CaNAB | 10008360 (uM^-2 s^-1) | 1 (s^-1) | Kd(af) = 0.0003(uM) | - | Ca Ca CaNAB
| CaNAB_dash_Ca2
|
| going on the experience with CaM, we put the fast (high affinity) sites first. We only know (Stemmer and Klee) that the affinity is < 70 nM. Assuming 10 nM at first, we get kf = 2.78e-8, kb = 1. Try 20 nM. kf = 7e-9, kb = 1 |
25 |
Ca_dash_bind_ dash_CaNAB_ dash_Ca2 | 3599.928 (uM^-2 s^-1) | 1 (s^-1) | Kd(af) = 0.0167(uM) | - | Ca Ca CaNAB_dash_Ca2
| CaNAB_dash_Ca4
|
| This process is probably much more complicated and involves CaM. However, as I can't find detailed info I am bundling this into a single step. Based on Steemer and Klee pg 6863, the Kact is 0.5 uM. kf/kb = 1/(0.5 * 6e5)^2 = 1.11e-11 |
26 |
Ca_stoch | 100 (s^-1) | 100 (s^-1) | Keq = 1(uM) | 0.005sec | Ca_input
| Ca
|
| |
27 |
Cbl_dephospho | 10 (s^-1) | 0.01 (s^-1) | Keq = 0.001(uM) | 0.1sec | Cbl_star
| Cbl
|
| |
28 |
CRK_C3G_Cbl_ star | 1 (uM^-1 s^-1) | 0.2 (s^-1) | Kd(bf) = 0.2(uM) | - | CRK_C3G Cbl_star
| CRK_C3G_Cbl_ star_clx
|
| |
29 |
dephosph_dash_ AC2 | 0.1 (s^-1) | 0 (s^-1) | - | - | AC2_star
| AC2
|
| |
30 |
dephosph_dash_ GAP | 0.1 (s^-1) | 0 (s^-1) | - | - | GAP_star
| GAP
|
| Assume a reasonably good rate for dephosphorylating it, 1/sec |
31 |
dephosph_dash_ GEF | 1 (s^-1) | 0 (s^-1) | - | - | GEF_star
| inact_dash_GEF
|
| |
32 |
dephosph_dash_ inact_dash_GEF_ star | 1 (s^-1) | 0 (s^-1) | - | - | inact_dash_GEF_ star
| inact_dash_GEF
|
| |
33 |
dephosph_dash_ PDE | 0.1 (s^-1) | 0 (s^-1) | - | - | cAMP_dash_PDE_ star
| cAMP_dash_PDE
|
| |
34 |
dephosph_Sos | 0.001 (s^-1) | 0.1 (s^-1) | Keq = 100(uM) | 9.901sec | Sos_star
| Sos
|
| |
35 |
Dimeriz_TrKB | 1 (uM^-1 s^-1) | 0.02 (s^-1) | Kd(bf) = 0.02(uM) | - | TrKB BDNF_TrkB_clx
| BDNF_TrkB2_clx
|
| |
36 |
dissociation | 0.0005 (s^-1) | 0.0001 (uM^-1 s^-1) | Kd(cb) = 0.2(uM) | - | R2_dash_cAMP4
| R2 cAMP
|
| |
37 |
dissoc_dash_ PP1_dash_I1 | 1 (s^-1) | 0 (uM^-1 s^-1) | - | - | PP1_dash_I1
| I1 PP1_dash_ active_c
|
| Let us assume that the equil in this case is very far over to the right. This is probably safe. |
38 |
Grb2_bind_Sos | 0.25 (uM^-1 s^-1) | 0.0168 (s^-1) | Kd(bf) = 0.0672(uM) | - | Grb2 Sos
| Sos.Grb2
|
| |
39 |
Grb2_bind_Sos_ star | 0.025 (uM^-1 s^-1) | 0.0168 (s^-1) | Kd(bf) = 0.672(uM) | - | Grb2 Sos_star
| Sos_star.Grb2
|
| |
40 |
Inact_dash_PP1 | 499.974 (uM^-1 s^-1) | 0.1 (s^-1) | Kd(bf) = 0.0002(uM) | - | I1_star PP1_dash_ active_c
| PP1_dash_I1_ star
|
| K inhib = 1nM from Cohen Ann Rev Bioch 1989, 4 nM from Foukes et al Assume 2 nM. kf /kb = 8.333e-4 |
41 |
inhib_dash_PKA | 60 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.0167(uM) | - | PKA_dash_active PKA_dash_ inhibitor
| inhibited_dash_ PKA
|
| |
42 |
intrinsic_ GTPase | 0.0001 (s^-1) | 0 (s^-1) | - | - | Rap1GTP
| Rap1GDP
|
| |
43 |
Ligand_binding | 1.0001 (uM^-1 s^-1) | 0.05 (s^-1) | Kd(bf) = 0.05(uM) | - | TrKB BDNF
| BDNF_TrkB_clx
|
| |
44 |
LR_cycling | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Int_BDNF_TrKB2_ star_clx
| TrKB
|
| |
45 |
LR_Internalize | 0.01 (s^-1) | 0 (uM^-1 s^-1) | - | - | BDNF_TrkB2_ star_clx
| Int_BDNF_TrKB2_ star_clx Int_BDNF_TrKB2_ star_clx
|
| |
46 |
PKAimport | 0.0003 (s^-1) | 0.0005 (s^-1) | Keq = 1.5164(uM) | 1250sec | PKA_dash_active
| PKA_dash_active
|
| |
47 |
PLC_g_p_ dephospho | 0.07 (s^-1) | 0 (s^-1) | - | - | PLC_g_star
| PLC_g
|
| |
48 |
PP1_transport | 0.003 (s^-1) | 0.0011 (s^-1) | Keq = 0.37(uM) | 243.902sec | PP1_dash_I1
| PP1_dash_I1
|
| |
49 |
Ras_dash_act_ dash_braf | 60 (uM^-1 s^-1) | 0.5 (s^-1) | Kd(bf) = 0.0083(uM) | - | bRaf GTP_dash_Ras
| braf_dash_GTP_ dash_Ras
|
| |
50 |
Ras_dash_act_ dash_craf | 9.9996 (uM^-1 s^-1) | 0.5 (s^-1) | Kd(bf) = 0.05(uM) | - | craf_dash_1_ star GTP_dash_Ras
| Raf_star_dash_ GTP_dash_Ras
|
| Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10. |
51 |
Ras_dash_act_ dash_unphosph_ dash_raf | 6 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.1667(uM) | - | craf_dash_1 GTP_dash_Ras
| Raf_dash_GTP_ dash_Ras
|
| 18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values. |
52 |
Ras_dash_ intrinsic_dash_ GTPase | 0.0001 (s^-1) | 0 (s^-1) | - | - | GTP_dash_Ras
| GDP_dash_Ras
|
| This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4 |
53 |
Release_dash_C1 | 60 (s^-1) | 18 (uM^-1 s^-1) | Kd(cb) = 0.3(uM) | - | R2C2_dash_cAMP4
| PKA_dash_active R2C_dash_cAMP4
|
| |
54 |
Release_dash_C2 | 60 (s^-1) | 18 (uM^-1 s^-1) | Kd(cb) = 0.3(uM) | - | R2C_dash_cAMP4
| PKA_dash_active R2_dash_cAMP4
|
| |
55 |
RSK_ autophosphorylat ion | 0.1 (s^-1) | 10 (s^-1) | Keq = 100(uM) | 0.099sec | pRSK
| ppRSK
|
| |
56 |
Shc_bind_ Sos.Grb2 | 5 (uM^-1 s^-1) | 0.1 (s^-1) | Kd(bf) = 0.02(uM) | - | Sos.Grb2 Shc_star
| Shc_ star.Sos.Grb2
|
| |
57 |
Shc_p_dephospho | 0.2 (s^-1) | 0 (s^-1) | - | - | Shc_star
| Shc
|
| |
58 |
SIK2_dephosp | 0.1 (s^-1) | 0 (s^-1) | - | - | SIK2_star
| SIK2
|
| |
59 |
Src_dephospho | 100 (s^-1) | 0.1 (s^-1) | Keq = 0.001(uM) | 0.01sec | Src_star
| Src
|
| |
60 |
TORC1_import | 0.01 (s^-1) | 0 (s^-1) | Keq = 0.0037(uM) | - | TORC1c
| TORC1c
|
| |
61 |
transport_MAPK | 0.0001 (s^-1) | 0.0011 (s^-1) | Keq = 11.1(uM) | 833.333sec | MAPK_star
| MAPK_star
|
| |
62 |
transport_RSK2n | 0.001 (s^-1) | 0.0019 (s^-1) | Keq = 1.85(uM) | 344.828sec | active_RSK2
| active_RSK2
|
| |