NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for mGluR

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
mGluR participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000020

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • NonOsc_Ca_
    IP3metabolism
  • 31Network
    MIPP CaMKII CaM 
    PKC IP3-3K CaRegulation 
    Gq PLCbeta 134_dephos 
    145_dephos IP4-system IHP-system 
    1345_dephos 
    This network models detailed metabolism of Ins(145)P3, integrated with GPCR mediated PLCbeta activation and Ca release by the InsP3 receptor in the neuron. It is similar to the NonOsc_Ca_IP3metab model (accession 23) except that some enzymes have been modified to have reversible kinetics rather than Michaelis-Menten kinetics. These modified enzymes belong to the groups: IP4-system, IP3-3K, 145_dephos and 134_dephos. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316.

    mGluR acting as a Molecule in  
    NonOsc_Ca_IP3metabolism Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    mGluR
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 31
  • Gq
    Pathway No. : 150
    0.31000No
    From Mahama and Linderman, Total # of receptors/cell = 1900 However, the density is likely to be very high at the synapse. Fay et al Biochem 30 5066-5075 1991 have a value of 60K receptors per cell for neutrophils which comes to 0.1 uM. Here we have a situation where trying to represent the synapse by a 10 micron cube gives awkward results. I will scale up to 0.3 uM since synaptic receptor density is likely to be higher, with the caveat that I should really be using a more geometrically realistic model.

    mGluR acting as a Substrate in a reaction in  
    NonOsc_Ca_IP3metabolism Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1
  • RecLigandBinding
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 31
  • Gq
    Pathway No. : 150
    16.8
    (uM^-1 s^-1)
    10
    (s^-1)
    Kd(bf) = 0.5952(uM)-Substrate
    Glu
    mGluR

    Product
    Rec-Glu
      From Martin et al FEBS Lett 316:2 191-196 1993 we have Kd = 600 nM Assuming kb = 10/sec, we get kf = 10/(0.6 uM * 6e5) = 2.8e-5 1/sec/# The off time for Glu seems pretty slow: Nicoletti et al 1986 PNAS 83:1931-1935 and Schoepp and Johnson 1989 J Neurochem 53 1865-1870 indicate it is at least 30 sec. Here we are a little faster because this is only a small part of the off rate, the rest coming from the Rec-Gq complex.
    2Rec-bind-Gq
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 31
  • Gq
    Pathway No. : 150
    0.6
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 1.6667(uM)-Substrate
    G-GDP
    mGluR

    Product
    Rec-Gq
      From Berstein et al 1992 JBC 267(12):8081-8088 we know that 15-40% of Gq binds, GTP_gamma_S. Also about 20-30% of Gq is bound to GTP. To get to these values the receptor-Gq amount should be similar. These rates are designed to give that steady state with a fast tau of 1 sec.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.