NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for Glu

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
Glu participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000020

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • NonOsc_Ca_
    IP3metabolism
  • 31Network
    MIPP CaMKII CaM 
    PKC IP3-3K CaRegulation 
    Gq PLCbeta 134_dephos 
    145_dephos IP4-system IHP-system 
    1345_dephos 
    This network models detailed metabolism of Ins(145)P3, integrated with GPCR mediated PLCbeta activation and Ca release by the InsP3 receptor in the neuron. It is similar to the NonOsc_Ca_IP3metab model (accession 23) except that some enzymes have been modified to have reversible kinetics rather than Michaelis-Menten kinetics. These modified enzymes belong to the groups: IP4-system, IP3-3K, 145_dephos and 134_dephos. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316.

    Glu acting as a Molecule in  
    NonOsc_Ca_IP3metabolism Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    Glu
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 31
  • Gq
    Pathway No. : 150
    01000Yes
    Varying the amount of (steady state) glu between .01 uM and up, the final amount of G*GTP complex does not change much. This means that the system should be reasonably robust wr to the amount of glu in the synaptic cleft. It would be nice to know how fast it is removed. Schoepp et al 1990 TIPS 11:508-515 give a range of Glu EC50 from rat brain in the range 120 to 1000 uM. Nicoletti 1986 PNAS 83:1931-1935 and Schoepp and Johnson 1989 J Neurochem 53:1865-1870 give an off time of at least 30 sec.

    Glu acting as a Substrate in a reaction in  
    NonOsc_Ca_IP3metabolism Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1
  • RecLigandBinding
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 31
  • Gq
    Pathway No. : 150
    16.8
    (uM^-1 s^-1)
    10
    (s^-1)
    Kd(bf) = 0.5952(uM)-Substrate
    Glu
    mGluR

    Product
    Rec-Glu
      From Martin et al FEBS Lett 316:2 191-196 1993 we have Kd = 600 nM Assuming kb = 10/sec, we get kf = 10/(0.6 uM * 6e5) = 2.8e-5 1/sec/# The off time for Glu seems pretty slow: Nicoletti et al 1986 PNAS 83:1931-1935 and Schoepp and Johnson 1989 J Neurochem 53 1865-1870 indicate it is at least 30 sec. Here we are a little faster because this is only a small part of the off rate, the rest coming from the Rec-Gq complex.
    2Glu-bind-Rec-Gq
  • NonOsc_Ca_
    IP3metabolism

    Accession No. : 31
  • Gq
    Pathway No. : 150
    16.8
    (uM^-1 s^-1)
    0.1
    (s^-1)
    Kd(bf) = 0.006(uM)-Substrate
    Glu
    Rec-Gq

    Product
    Rec-Glu-Gq
      From Fay et al kb3 = kb = 1.06e-3 which is rather slow. k+1 = kf = 2.8e7 /M/sec= 4.67e-5/sec use 5e-5. However, the Kd from Martin et al may be more appropriate, as this is Glu not the system from Fay. kf = 2.8e-5, kb = 10 Let us compromise. since we have the Fay model, keep kf = k+1 = 2.8e-5. But kb (k-3) is .01 * k-1 from Fay. Scaling by .01, kb = .01 * 10 = 0.1



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.