|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for DAG | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics |
DAG participated as | Molecule | Sum total of | Enzyme | Substrate of an enzyme | Product of an enzyme | Substrate in Reaction | Product in Reaction | No. of occurrences | 1 | 0 | 0 | 0 | 0 | 3 | 0 |
Accession and Pathway Details | |
DAG acting as a Molecule in MAPK-bistability-fig1c Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | DAG | MAPK-bistability -fig1c Accession No. : 35 | Shared_Object_ MAPK-bistability -fig1c Pathway No. : 179 | 11.661 | 1000 | Yes | Baseline in model is 11.661 uM. DAG is pretty nasty to estimate. In this model we just hold it fixed at this baseline level. Data sources are many and varied and sometimes difficult to reconcile. Welsh and Cabot 1987 JCB 35:231-245: DAG degradation Bocckino et al JBC 260(26):14201-14207: hepatocytes stim with vasopressin: 190 uM. Bocckino et al 1987 JBC 262(31):15309-15315: DAG rises from 70 to 200 ng/mg wet weight, approx 150 to 450 uM. Prescott and Majerus 1983 JBC 258:764-769: Platelets: 6 uM. Also see Rittenhouse-Simmons 1979 J Clin Invest 63. Sano et al JBC 258(3):2010-2013: Report a nearly 10 fold rise. Habenicht et al 1981 JBC 256(23)12329-12335: 3T3 cells with PDGF stim: 27 uM Cornell and Vance 1987 BBA 919:23-36: 10x rise from 10 to 100 uM. Summary: I see much lower rises in my PLC models, but the baseline could be anywhere from 5 to 100 uM. I have chosen about 11 uM based on the stimulus -response characteristics from the Schaechter and Benowitz paper and the Shinomura et al papers. |
DAG acting as a Substrate in a reaction in MAPK-bistability-fig1c Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | PKC-act-by-DAG | MAPK-bistability -fig1c Accession No. : 35 | PKC Pathway No. : 181 | 0.008 (uM^-1 s^-1) | 8.6348 (s^-1) | Kd(bf) = 1079.377(uM) | - | Substrate DAG PKC-Ca
Product PKC-Ca-DAG
| | Ca.PKC interaction with DAG is modeled by this reaction. Kf based on Shinomura et al PNAS 88 5149-5153 1991 and Schaechter and Benowitz 1993 J Neurosci 13(10):4361 and uses the constraining procedure referred to in the general notes for PKC. | 2 | PKC-n-DAG | MAPK-bistability -fig1c Accession No. : 35 | PKC Pathway No. : 181 | 0.0006 (uM^-1 s^-1) | 0.1 (s^-1) | Kd(bf) = 166.6667(uM) | - | Substrate DAG PKC-cytosolic
Product PKC-DAG
| | Binding of PKC to DAG, non-Ca dependent. Kf based on Shinomura et al PNAS 88 5149-5153 1991 Tau estimated as fast and here it is about the same time-course as the formation of DAG so it will not be rate-limiting. | 3 | DAG-Ca-PLA2-act | MAPK-bistability -fig1c Accession No. : 35 | PLA2 Pathway No. : 183 | 0.003 (uM^-1 s^-1) | 4 (s^-1) | Kd(bf) = 1333.3333(uM) | - | Substrate DAG PLA2-Ca*
Product DAG-Ca-PLA2*
| | Synergistic activation of PLA2 by Ca and DAG. Based on Leslie and Channon 1990 BBA 1045:261 The Kd is rather large and may reflect the complications in measuring DAG. For this model it is not critical since DAG is held fixed. |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|