|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for PLC-Ca-Gq | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Ajay_Bhalla_ 2004_PKM_Tuning | 76 | Network | PKC, Shared_Object_Ajay_Bhalla_2004_PKM_tuning, PLA2, PLCbeta, Gq, MAPK, Ras, EGFR, Sos, PLC_g, CaMKII, CaM, PP1, PP2B, PKA, AC, PKM | This model is taken from the Ajay SM, Bhalla US. Eur J Neurosci. 2004 Nov;20(10):2671-80. This is the reference feedforward model from Figure 8a. |
PLC-Ca-Gq acting as a Molecule in Ajay_Bhalla_2004_PKM_Tuning Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | PLC-Ca-Gq | Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | PLCbeta Pathway No. : 315 | 0 | 1.5 | No | This should really be labelled PLC-G*GTP-Ca. This is the activated form of the enzyme. Mahama and Linderman assume that the IP3 precursors are not rate-limiting, but I will include those for completeness as they may be needed later. |
PLC-Ca-Gq acting as an Enzyme in Ajay_Bhalla_2004_PKM_Tuning Network
Enzyme Molecule / Enzyme Activity | Accession Name | Pathway Name | Km (uM) | kcat (s^-1) | Ratio | Enzyme Type | Reagents | PLC-Ca-Gq / PLCb-Ca-Gq
| Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | PLCbeta Pathway No. : 315 | 5.00003 | 48 | 4 | explicit E-S complex | Substrate PIP2
Product DAG IP3
| From Sternweis et al, Phil Trans R Soc Lond 1992, and the values from other refs eg Homma et al JBC 263(14) pp6592 1988 match. k1 = 5e-5/sec k2 = 240/sec; now 120/sec k3 = 60/sec; now 30/sec Note that the wording in Sternweis et al is ambiguous wr. to the Km for Gq vs non-Gq states of PLC. K1 is still a bit too low. Raise to 7e-5 9 Jun 1996: k1 was 0.0002, changed to 5e-5 |
PLC-Ca-Gq acting as a Substrate in a reaction in Ajay_Bhalla_2004_PKM_Tuning Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | Inact-PLC-Gq | Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | PLCbeta Pathway No. : 315 | 0.0133 (s^-1) | 0 (uM^-1 s^-1) | - | - | Substrate PLC-Ca-Gq
Product G*GDP PLC-Ca
| This process is assumed to be directly caused by the inactivation of the G*GTP to G*GDP. Hence, kf = .013 /sec = 0.8/min, same as the rate for Inact-G. kb = 0 since this is irreversible. We may be interested in studying the role of PLC as a GAP. If so, the kf would be faster here than in Inact-G |
PLC-Ca-Gq acting as a Product in a reaction in Ajay_Bhalla_2004_PKM_Tuning Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | Act-PLC-by-Gq | Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | PLCbeta Pathway No. : 315 | 25.2 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.0397(uM) | - | Substrate G*GTP PLC-Ca
Product PLC-Ca-Gq
| | Affinity for Gq is > 20 nM (Smrcka et al Science251 804-807 1991) so [Gq].kf = kb so 40nM * 6e5 = kb/kf = 24e3 so kf = 4.2e-5, kb =1 | 2 | PLC-Gq-bind-Ca | Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | PLCbeta Pathway No. : 315 | 29.9997 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.0333(uM) | - | Substrate Ca PLC-Gq
Product PLC-Ca-Gq
| | this step has a high affinity for Ca, from Smrcka et al. 0.1uM so kf /kb = 1/6e4 = 1.666e-5:1. See the Act-PLC-by-Gq reac. 11 Jun 1996: Raised kf to 5e-5 based on match to conc-eff curves from Smrcka et al. |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|