|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for G*GTP | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Ajay_Bhalla_ 2004_PKM_Tuning | 76 | Network | PKC, Shared_Object_Ajay_Bhalla_2004_PKM_tuning, PLA2, PLCbeta, Gq, MAPK, Ras, EGFR, Sos, PLC_g, CaMKII, CaM, PP1, PP2B, PKA, AC, PKM | This model is taken from the Ajay SM, Bhalla US. Eur J Neurosci. 2004 Nov;20(10):2671-80. This is the reference feedforward model from Figure 8a. |
G*GTP acting as a Molecule in Ajay_Bhalla_2004_PKM_Tuning Network
G*GTP acting as a Substrate in a reaction in Ajay_Bhalla_2004_PKM_Tuning Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | Act-PLC-by-Gq | Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | PLCbeta Pathway No. : 315 | 25.2 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.0397(uM) | - | Substrate G*GTP PLC-Ca
Product PLC-Ca-Gq
| | Affinity for Gq is > 20 nM (Smrcka et al Science251 804-807 1991) so [Gq].kf = kb so 40nM * 6e5 = kb/kf = 24e3 so kf = 4.2e-5, kb =1 | 2 | PLC-bind-Gq | Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | PLCbeta Pathway No. : 315 | 2.52 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.3968(uM) | - | Substrate G*GTP PLC
Product PLC-Gq
| | this binding does not produce active PLC. This step was needed to implement the described (Smrcka et al) increase in affinity for Ca by PLC once Gq was bound. The kinetics are the same as the binding step for Ca-PLC to Gq. June 1996: Changed the kf to 4.2e-5 to 4.2e-6 to preserve balance around the reactions. | 3 | Inact-G | Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | Gq Pathway No. : 316 | 0.0133 (s^-1) | 0 (s^-1) | - | - | Substrate G*GTP
Product G*GDP
| | From Berstein et al JBC 267:12 8081-8088 1992, kcat for GTPase activity of Gq is only 0.8/min |
G*GTP acting as a Product in a reaction in Ajay_Bhalla_2004_PKM_Tuning Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | Basal-Act-G | Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | Gq Pathway No. : 316 | 0.0001 (s^-1) | 0 (uM^-1 s^-1) | - | - | Substrate G-GDP
Product BetaGamma G*GTP
| | kf = kg1 = 0.01/sec, kb = 0. This is the basal exchange of GTP for GDP. | 2 | Activate-Gq | Ajay_Bhalla_ 2004_PKM_Tuning Accession No. : 76 | Gq Pathway No. : 316 | 0.01 (s^-1) | 0 (uM^-2 s^-1) | - | - | Substrate Rec-Glu-Gq
Product BetaGamma G*GTP Rec-Glu
| | This is the kcat==k3 stage of the Rec-Glu ezymatic activation of Gq. From Berstein et al actiation is at .35 - 0.7/min From Fay et al Biochem 30 5066-5075 1991 kf = .01/sec From Nakamura et al J physiol Lond 474:1 35-41 1994 see time courses. Also (Berstein) 15-40% of gprot is in GTP-bound form on stim. |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|