NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for PLC_G*

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
PLC_G* participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000010

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Ajay_Bhalla_
    2004_PKM_Tuning
  • 76Network
    PKC Shared_Object_Ajay_Bhalla_2004_PKM_tuning PLA2 
    PLCbeta Gq MAPK 
    Ras EGFR Sos 
    PLC_g CaMKII CaM 
    PP1 PP2B PKA 
    AC PKM 
    This model is taken from the Ajay SM, Bhalla US. Eur J Neurosci. 2004 Nov;20(10):2671-80. This is the reference feedforward model from Figure 8a.

    PLC_G* acting as a Molecule in  
    Ajay_Bhalla_2004_PKM_Tuning Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    PLC_G*
  • Ajay_Bhalla_
    2004_PKM_Tuning

    Accession No. : 76
  • PLC_g
    Pathway No. : 321
    01.5No

    PLC_G* acting as a Substrate in a reaction in  
    Ajay_Bhalla_2004_PKM_Tuning Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
    Ca_act_PLC_g*
  • Ajay_Bhalla_
    2004_PKM_Tuning

    Accession No. : 76
  • PLC_g
    Pathway No. : 321
    11.9997
    (uM^-1 s^-1)
    10
    (s^-1)
    Kd(bf) = 0.8334(uM)-Substrate
    Ca
    PLC_G*

    Product
    Ca.PLC_g*
    Again, we refer to Homma et al and Wahl et al, for preference using Wahl. Half-Max of the phosph form is at 316 nM. Use kb of 10 as this is likely to be pretty fast. Did some curve comparisons, and instead of 316 nM giving a kf of 5.27e-5, we will use 8e-5 for kf. 16 Sep 97. As we are now phosphorylating the Ca-bound form, equils have shifted. kf should now be 2e-5 to match the curves.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.