|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for Sos | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Ajay_Bhalla_ 2004_PKM_MKP3_ Tuning | 77 | Network | Shared_Object_Ajay_Bhalla_2004_PKM_MKP3_Tuning, PKC, PLA2, PLCbeta, Ras, Gq, MAPK, EGFR, Sos, PLC_g, CaMKII, CaM, PP1, PP2B, PKA, AC, MKP3, PKM | This model is based on Ajay SM, Bhalla US. Eur J Neurosci. 2004 Nov;20(10):2671-80. This is the feedforward model with MPK3 from figure 8a. |
Sos acting as a Molecule in Ajay_Bhalla_2004_PKM_MKP3_Tuning Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | Sos | Ajay_Bhalla_ 2004_PKM_MKP3_ Tuning Accession No. : 77 | Sos Pathway No. : 337 | 0.1 | 1.5 | No | I have tried using low (0.02 uM) initial concs, but these give a very flat response to EGF stim although the overall activation of Ras is not too bad. I am reverting to 0.1 because we expect a sharp initial response, followed by a decline. Sep 17 1997: The transient activation curve looks better with [Sos] = 0.05. Apr 26 1998: Some error there, it is better where it was at 0.1 |
Sos acting as a Substrate for an Enzyme in Ajay_Bhalla_2004_PKM_MKP3_Tuning Network
Enzyme Molecule / Enzyme Activity | Accession Name | Pathway Name | Km (uM) | kcat (s^-1) | Ratio | Enzyme Type | Reagents | MAPK* / phosph_Sos | Ajay_Bhalla_ 2004_PKM_MKP3_ Tuning Accession No. : 77 | Shared_Object_ Ajay_Bhalla_ 2004_PKM_MKP3_ Tuning Pathway No. : 329 | 2.56406 | 10 | 4 | explicit E-S complex | Substrate Sos
Product Sos*
| See Porfiri and McCormick JBC 271:10 pp5871 1996 for the existence of this step. We'll take the rates from the ones used for the phosph of Raf by MAPK. Sep 17 1997: The transient activation curve matches better with k1 up by 10 x. |
Sos acting as a Substrate in a reaction in Ajay_Bhalla_2004_PKM_MKP3_Tuning Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | Grb2_bind_Sos | Ajay_Bhalla_ 2004_PKM_MKP3_ Tuning Accession No. : 77 | Sos Pathway No. : 337 | 0.025 (uM^-1 s^-1) | 0.0168 (s^-1) | Kd(bf) = 0.672(uM) | - | Substrate Grb2 Sos
Product Sos.Grb2
| As there are 2 SH3 domains, this reaction could be 2nd order. I have a Kd of 22 uM from peptide binding (Lemmon et al JBC 269:50 pg 31653). However, Chook et al JBC 271:48 pg30472 say it is 0.4uM with purified proteins, so we believe them. They say it is 1:1 binding. |
Sos acting as a Product in a reaction in Ajay_Bhalla_2004_PKM_MKP3_Tuning Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | dephosph_Sos | Ajay_Bhalla_ 2004_PKM_MKP3_ Tuning Accession No. : 77 | Sos Pathway No. : 337 | 0.001 (s^-1) | 0 (s^-1) | - | - | Substrate Sos*
Product Sos
| The only clue I have to these rates is from the time courses of the EGF activation, which is around 1 to 5 min. The dephosph would be expected to be of the same order, perhaps a bit longer. Lets use 0.002 which is about 8 min. Sep 17: The transient activation curve matches better with kf = 0.001 |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|