NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for GTP-Ras

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
GTP-Ras participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences40004012015939

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Ajay_Bhalla_
    2007_ReacDiff2
  • 83NetworkShared_Object_Ajay_Bhalla_2007_ReacDiff PKC MAPK 
    Ras CaM PKM chain kinetics PKC MAPK Ras CaM PKM kinetics[1] 
    PKC MAPK Ras kinetics[3] CaM PKM kinetics[2] PKC MAPK Ras 
    CaM PKM PKC MAPK Ras CaM PKM kinetics[4] PKC MAPK Ras CaM 
    PKM kinetics[5] PKC MAPK Ras CaM PKM kinetics[6] PKC MAPK 
    Ras CaM PKM kinetics[7] PKC MAPK Ras CaM PKM kinetics[8] 
    PKC MAPK Ras CaM PKM kinetics[9] PKC MAPK Ras CaM PKM kinetics[10] 
    PKC MAPK Ras CaM PKM kinetics[11] PKC MAPK Ras CaM PKM kinetics[12] 
    PKC MAPK Ras CaM PKM kinetics[13] PKC MAPK Ras CaM PKM kinetics[14] 
    PKC MAPK Ras CaM PKM kinetics[15] PKC MAPK Ras CaM PKM kinetics[16] 
    PKC MAPK Ras CaM PKM kinetics[17] PKC MAPK Ras CaM PKM kinetics[18] 
    PKC MAPK Ras CaM PKM kinetics[19] PKC MAPK Ras CaM PKM kinetics[20] 
    PKC MAPK Ras CaM PKM kinetics[21] PKC MAPK Ras CaM PKM kinetics[22] 
    PKC MAPK Ras CaM PKM kinetics[23] PKC MAPK Ras CaM PKM kinetics[24] 
    PKC MAPK Ras CaM PKM kinetics[25] PKC MAPK Ras CaM PKM kinetics[26] 
    PKC MAPK Ras CaM PKM kinetics[27] PKC MAPK Ras CaM PKM kinetics[28] 
    PKC MAPK Ras CaM PKM kinetics[29] PKC MAPK Ras CaM PKM kinetics[30] 
    PKC MAPK Ras CaM PKM kinetics[31] PKC MAPK Ras CaM PKM kinetics[32] 
    PKC MAPK Ras CaM PKM kinetics[33] PKC MAPK Ras CaM PKM kinetics[34] 
    PKC MAPK Ras CaM PKM kinetics[35] PKC MAPK Ras CaM PKM kinetics[36] 
    PKC MAPK Ras CaM PKM kinetics[37] PKC MAPK Ras CaM PKM kinetics[38] 
    PKC MAPK Ras CaM PKM 
    This is a 40-compartment reaction-diffusion-transport version of the Ajay_Bhalla_2007_PKM model. The original single-compartment model is repeated 40 times. In addition, a subset (27 out of 42) molecules can diffuse between compartments. Diffusion is implemented as a reaction between corresponding molecules in neighboring compartments. For D = 1e-12 m^2/sec (i.e., 1 micron^2/sec ) the kf and kb of this reaction for these 10 micron compartments are both 0.01/sec In addition, we have a forward (dendrite to soma) transport term of 1 microns/sec. This converts to a rate of 0.1/sec, but applies only to the kf. So the total kf of the diffusion 'reaction' is 0.11 for D = 1 micron^2/sec, and kb is 0.01. If D=0.1 micron^2/sec then kf = 0.101 and kb = 0.001. In addition this model has all molecules buffered in the first and last compartments. This boundary conditions says that the molecules are not drained out of the first compartment, nor do they all pile up in the last one.
    The stimulus file pkm_mapk22_transp_endbuf_D1e-13_Fig4CD which was used for the model to replicate Figure 4C and 4D from the paper.

    GTP-Ras acting as a Molecule in  
    Ajay_Bhalla_2007_ReacDiff2 Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 687
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 693
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 700
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 705
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 711
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 717
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 723
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 729
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 735
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 741
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 747
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 753
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 759
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 765
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 771
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 777
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 783
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 789
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 795
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 801
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 807
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 813
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 819
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 825
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 831
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 837
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 843
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 849
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 855
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 861
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 867
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 873
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 879
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 885
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 891
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 897
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 903
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 909
    0.00351.5No
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 680
    0.00351.5Yes
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437
    GTP-Ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 915
    0.00351.5Yes
    Only a very small fraction (7% unstim, 15% stim) of ras is GTP-bound. Gibbs et al JBC 265(33) 20437

    GTP-Ras acting as a Substrate for an Enzyme in  
    Ajay_Bhalla_2007_ReacDiff2 Network
     Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    1GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 680
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    2GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 687
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    3GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 693
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    4GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 700
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    5GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 705
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    6GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 711
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    7GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 717
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    8GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 723
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    9GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 729
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    10GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 735
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    11GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 741
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    12GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 747
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    13GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 753
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    14GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 759
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    15GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 765
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    16GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 771
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    17GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 777
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    18GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 783
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    19GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 789
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    20GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 795
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    21GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 801
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    22GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 807
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    23GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 813
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    24GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 819
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    25GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 825
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    26GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 831
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    27GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 837
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    28GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 843
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    29GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 849
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    30GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 855
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    31GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 861
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    32GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 867
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    33GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 873
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    34GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 879
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    35GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 885
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    36GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 891
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    37GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 897
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    38GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 903
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    39GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 909
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.
    40GAP  /
    GAP-inact-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 915
    1.0104104explicit E-S complexSubstrate
    GTP-Ras

    Product
    GDP-Ras
        From Eccleston et al JBC 268(36)pp27012-19 get Kd < 2uM, kcat - 10/sec From Martin et al Cell 63 843-849 1990 get Kd ~ 250 nM, kcat = 20/min I will go with the Eccleston figures as there are good error bars (10%). In general the values are reasonably close. k1 = 1.666e-3/sec, k2 = 1000/sec, k3 = 10/sec (note k3 is rate-limiting) 5 Nov 2002: Changed ratio term to 4 from 100. Now we have k1=8.25e-5; k2=40, k3=10. k3 is still rate-limiting.

    GTP-Ras acting as a Product of an Enzyme in  
    Ajay_Bhalla_2007_ReacDiff2 Network
     Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    1inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 680
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    2GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 680
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    3CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 680
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    4inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 687
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    5GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 687
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    6CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 687
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    7inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 693
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    8GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 693
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    9CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 693
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    10inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 700
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    11GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 700
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    12CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 700
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    13inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 705
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    14GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 705
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    15CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 705
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    16inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 711
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    17GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 711
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    18CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 711
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    19inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 717
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    20GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 717
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    21CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 717
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    22inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 723
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    23GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 723
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    24CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 723
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    25inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 729
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    26GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 729
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    27CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 729
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    28inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 735
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    29GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 735
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    30CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 735
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    31inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 741
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    32GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 741
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    33CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 741
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    34inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 747
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    35GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 747
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    36CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 747
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    37inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 753
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    38GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 753
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    39CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 753
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    40inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 759
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    41GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 759
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    42CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 759
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    43inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 765
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    44GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 765
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    45CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 765
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    46inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 771
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    47GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 771
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    48CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 771
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    49inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 777
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    50GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 777
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    51CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 777
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    52inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 783
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    53GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 783
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    54CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 783
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    55inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 789
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    56GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 789
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    57CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 789
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    58inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 795
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    59GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 795
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    60CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 795
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    61inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 801
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    62GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 801
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    63CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 801
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    64inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 807
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    65GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 807
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    66CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 807
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    67inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 813
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    68GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 813
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    69CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 813
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    70inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 819
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    71GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 819
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    72CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 819
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    73inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 825
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    74GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 825
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    75CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 825
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    76inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 831
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    77GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 831
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    78CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 831
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    79inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 837
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    80GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 837
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    81CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 837
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    82inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 843
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    83GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 843
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    84CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 843
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    85inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 849
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    86GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 849
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    87CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 849
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    88inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 855
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    89GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 855
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    90CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 855
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    91inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 861
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    92GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 861
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    93CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 861
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    94inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 867
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    95GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 867
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    96CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 867
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    97inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 873
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    98GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 873
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    99CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 873
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    100inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 879
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    101GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 879
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    102CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 879
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    103inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 885
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    104GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 885
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    105CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 885
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    106inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 891
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    107GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 891
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    108CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 891
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    109inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 897
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    110GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 897
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    111CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 897
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    112inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 903
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    113GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 903
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    114CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 903
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    115inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 909
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    116GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 909
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    117CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 909
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    118inact-GEF  /
  • basal_GEF_
    activity
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 915
    10.10150.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
       
    119GEF*  /
    GEF*-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 915
    0.5050570.024explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg-act-ras
    120CaM-GEF  /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 915
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.

    GTP-Ras acting as a Substrate in a reaction in  
    Ajay_Bhalla_2007_ReacDiff2 Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    2diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    3
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 680
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    4
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    5Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics
    Pathway No. : 684
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    6diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    7
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 687
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    8
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics
    Pathway No. : 684
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    9Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[1]
    Pathway No. : 690
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    10diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    11
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 693
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    12
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[1]
    Pathway No. : 690
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    13Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[2]
    Pathway No. : 697
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    14diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    15
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 700
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    16
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[2]
    Pathway No. : 697
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    17Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[3]
    Pathway No. : 694
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    18diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    19
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 705
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    20
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[3]
    Pathway No. : 694
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    21Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[4]
    Pathway No. : 708
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    22diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    23
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 711
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    24
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[4]
    Pathway No. : 708
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    25Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[5]
    Pathway No. : 714
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    26diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    27
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 717
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    28
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[5]
    Pathway No. : 714
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    29Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[6]
    Pathway No. : 720
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    30diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    31
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 723
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    32
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[6]
    Pathway No. : 720
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    33Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[7]
    Pathway No. : 726
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    34diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    35
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 729
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    36
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[7]
    Pathway No. : 726
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    37Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[8]
    Pathway No. : 732
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    38diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    39
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 735
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    40
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[8]
    Pathway No. : 732
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    41Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[9]
    Pathway No. : 738
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    42diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    43
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 741
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    44
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[9]
    Pathway No. : 738
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    45Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[10]
    Pathway No. : 744
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    46diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    47
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 747
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    48
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[10]
    Pathway No. : 744
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    49Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[11]
    Pathway No. : 750
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    50diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    51
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 753
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    52
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[11]
    Pathway No. : 750
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    53Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[12]
    Pathway No. : 756
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    54diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    55
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 759
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    56
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[12]
    Pathway No. : 756
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    57Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[13]
    Pathway No. : 762
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    58diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    59
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 765
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    60
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[13]
    Pathway No. : 762
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    61Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[14]
    Pathway No. : 768
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    62diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    63
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 771
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    64
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[14]
    Pathway No. : 768
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    65Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[15]
    Pathway No. : 774
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    66diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    67
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 777
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    68
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[15]
    Pathway No. : 774
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    69Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[16]
    Pathway No. : 780
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    70diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    71
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 783
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    72
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[16]
    Pathway No. : 780
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    73Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[17]
    Pathway No. : 786
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    74diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    75
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 789
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    76
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[17]
    Pathway No. : 786
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    77Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[18]
    Pathway No. : 792
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    78diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    79
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 795
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    80
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[18]
    Pathway No. : 792
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    81Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[19]
    Pathway No. : 798
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    82diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    83
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 801
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    84
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[19]
    Pathway No. : 798
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    85Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[20]
    Pathway No. : 804
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    86diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    87
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 807
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    88
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[20]
    Pathway No. : 804
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    89Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[21]
    Pathway No. : 810
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    90diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    91
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 813
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    92
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[21]
    Pathway No. : 810
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    93Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[22]
    Pathway No. : 816
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    94diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    95
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 819
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    96
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[22]
    Pathway No. : 816
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    97Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[23]
    Pathway No. : 822
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    98diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    99
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 825
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    100
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[23]
    Pathway No. : 822
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    101Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[24]
    Pathway No. : 828
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    102diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    103
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 831
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    104
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[24]
    Pathway No. : 828
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    105Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[25]
    Pathway No. : 834
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    106diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    107
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 837
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    108
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[25]
    Pathway No. : 834
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    109Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[26]
    Pathway No. : 840
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    110diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    111
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 843
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    112
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[26]
    Pathway No. : 840
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    113Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[27]
    Pathway No. : 846
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    114diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    115
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 849
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    116
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[27]
    Pathway No. : 846
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    117Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[28]
    Pathway No. : 852
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    118diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    119
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 855
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    120
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[28]
    Pathway No. : 852
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    121Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[29]
    Pathway No. : 858
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    122diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    123
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 861
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    124
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[29]
    Pathway No. : 858
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    125Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[30]
    Pathway No. : 864
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    126diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    127
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 867
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    128
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[30]
    Pathway No. : 864
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    129Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[31]
    Pathway No. : 870
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    130diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    131
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 873
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    132
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[31]
    Pathway No. : 870
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    133Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[32]
    Pathway No. : 876
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    134diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    135
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 879
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    136
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[32]
    Pathway No. : 876
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    137Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[33]
    Pathway No. : 882
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    138diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    139
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 885
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    140
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[33]
    Pathway No. : 882
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    141Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[34]
    Pathway No. : 888
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    142diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    143
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 891
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    144
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[34]
    Pathway No. : 888
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    145Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[35]
    Pathway No. : 894
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    146diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    147
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 897
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    148
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[35]
    Pathway No. : 894
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    149Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[36]
    Pathway No. : 900
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    150diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    151
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 903
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    152
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[36]
    Pathway No. : 900
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    153Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[37]
    Pathway No. : 906
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    154diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    155
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 909
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    156
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[37]
    Pathway No. : 906
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.
    157Ras-act-craf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[38]
    Pathway No. : 912
    9.9998
    (uM^-1 s^-1)
    0.5
    (s^-1)
    Kd(bf) = 0.05(uM)-Substrate
    GTP-Ras
    craf-1*

    Product
    Raf*-GTP-Ras
      Assume the binding is fast and limited only by the amount of Ras* available. So kf=kb/[craf-1] If kb is 1/sec, then kf = 1/0.2 uM = 1/(0.2 * 6e5) = 8.3e-6 Later: Raise it by 10 X to 4e-5 From Hallberg et al JBC 269:6 3913-3916 1994, 3% of cellular Raf is complexed with Ras. So we raise kb 4x to 4 This step needed to memb-anchor and activate Raf: Leevers et al Nature 369 411-414 May 16, 2003 Changed Ras and Raf to synaptic levels, an increase of about 2x for each. To maintain the percentage of complexed Raf, reduced the kf by 2.4 fold to 10.
    158
  • Ras-intrinsic-GT
    Pase
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Ras
    Pathway No. : 915
    0.0001
    (s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras

    Product
    GDP-Ras
      This is extremely slow (1e-4), but it is significant as so little GAP actually gets complexed with it that the total GTP turnover rises only by 2-3 X (see Gibbs et al, JBC 265(33) 20437-20422) and Eccleston et al JBC 268(36) 27012-27019 kf = 1e-4
    159
  • Ras-act-unphosph
    -raf
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • kinetics[38]
    Pathway No. : 912
    0
    (uM^-1 s^-1)
    0
    (s^-1)
    --Substrate
    GTP-Ras
    craf-1

    Product
    Raf-GTP-Ras
      18 May 2003. This reaction is here to provide basal activity for MAPK as well as the potential for direct EGF stimulus without PKC activation. Based on model from FB/fb28c.g: the model used for MKP-1 turnover. The rates there were constrained by basal activity values.

    GTP-Ras acting as a Product in a reaction in  
    Ajay_Bhalla_2007_ReacDiff2 Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    2diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    3diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    4diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    5diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    6diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    7diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    8diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    9diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    10diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    11diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    12diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    13diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    14diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    15diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    16diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    17diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    18diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    19diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    20diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    21diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    22diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    23diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    24diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    25diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    26diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    27diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    28diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    29diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    30diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    31diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    32diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    33diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    34diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    35diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    36diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    37diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    38diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras
    39diff
  • Ajay_Bhalla_
    2007_ReacDiff2

    Accession No. : 83
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff

    Pathway No. : 677
  • 0.101
    (s^-1)
    0.001
    (s^-1)
    Keq = 0.0099(uM)9.804secSubstrate
    GTP-Ras

    Product
    GTP-Ras



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.