| Enzyme Molecule / Enzyme Activity | Accession Name | Pathway Name | Km (uM) | kcat (s^-1) | Ratio | Enzyme Type | Reagents |
1 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff Pathway No. : 677 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
2 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff Pathway No. : 677 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
3 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff Pathway No. : 677 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
4 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics Pathway No. : 684 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
5 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics Pathway No. : 684 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
6 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics Pathway No. : 684 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
7 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[1] Pathway No. : 690 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
8 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[1] Pathway No. : 690 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
9 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[1] Pathway No. : 690 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
10 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[2] Pathway No. : 697 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
11 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[2] Pathway No. : 697 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
12 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[2] Pathway No. : 697 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
13 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[3] Pathway No. : 694 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
14 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[3] Pathway No. : 694 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
15 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[3] Pathway No. : 694 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
16 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[4] Pathway No. : 708 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
17 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[4] Pathway No. : 708 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
18 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[4] Pathway No. : 708 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
19 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[5] Pathway No. : 714 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
20 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[5] Pathway No. : 714 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
21 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[5] Pathway No. : 714 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
22 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[6] Pathway No. : 720 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
23 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[6] Pathway No. : 720 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
24 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[6] Pathway No. : 720 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
25 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[7] Pathway No. : 726 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
26 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[7] Pathway No. : 726 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
27 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[7] Pathway No. : 726 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
28 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[8] Pathway No. : 732 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
29 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[8] Pathway No. : 732 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
30 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[8] Pathway No. : 732 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
31 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[9] Pathway No. : 738 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
32 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[9] Pathway No. : 738 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
33 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[9] Pathway No. : 738 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
34 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[10] Pathway No. : 744 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
35 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[10] Pathway No. : 744 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
36 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[10] Pathway No. : 744 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
37 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[11] Pathway No. : 750 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
38 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[11] Pathway No. : 750 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
39 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[11] Pathway No. : 750 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
40 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[12] Pathway No. : 756 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
41 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[12] Pathway No. : 756 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
42 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[12] Pathway No. : 756 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
43 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[13] Pathway No. : 762 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
44 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[13] Pathway No. : 762 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
45 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[13] Pathway No. : 762 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
46 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[14] Pathway No. : 768 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
47 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[14] Pathway No. : 768 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
48 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[14] Pathway No. : 768 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
49 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[31] Pathway No. : 870 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
50 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[31] Pathway No. : 870 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
51 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[15] Pathway No. : 774 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
52 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[15] Pathway No. : 774 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
53 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[15] Pathway No. : 774 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
54 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[16] Pathway No. : 780 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
55 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[16] Pathway No. : 780 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
56 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[16] Pathway No. : 780 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
57 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[17] Pathway No. : 786 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
58 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[17] Pathway No. : 786 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
59 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[17] Pathway No. : 786 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
60 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[18] Pathway No. : 792 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
61 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[18] Pathway No. : 792 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
62 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[18] Pathway No. : 792 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
63 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[19] Pathway No. : 798 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
64 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[19] Pathway No. : 798 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
65 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[19] Pathway No. : 798 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
66 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[20] Pathway No. : 804 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
67 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[20] Pathway No. : 804 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
68 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[20] Pathway No. : 804 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
69 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[21] Pathway No. : 810 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
70 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[21] Pathway No. : 810 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
71 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[21] Pathway No. : 810 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
72 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[22] Pathway No. : 816 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
73 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[22] Pathway No. : 816 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
74 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[22] Pathway No. : 816 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
75 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[23] Pathway No. : 822 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
76 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[23] Pathway No. : 822 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
77 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[23] Pathway No. : 822 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
78 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[24] Pathway No. : 828 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
79 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[24] Pathway No. : 828 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
80 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[24] Pathway No. : 828 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
81 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[25] Pathway No. : 834 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
82 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[25] Pathway No. : 834 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
83 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[25] Pathway No. : 834 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
84 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[26] Pathway No. : 840 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
85 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[26] Pathway No. : 840 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
86 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[26] Pathway No. : 840 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
87 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[27] Pathway No. : 846 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
88 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[27] Pathway No. : 846 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
89 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[27] Pathway No. : 846 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
90 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[28] Pathway No. : 852 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
91 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[28] Pathway No. : 852 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
92 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[28] Pathway No. : 852 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
93 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[29] Pathway No. : 858 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
94 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[29] Pathway No. : 858 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
95 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[29] Pathway No. : 858 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
96 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[30] Pathway No. : 864 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
97 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[30] Pathway No. : 864 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
98 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[30] Pathway No. : 864 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
99 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[31] Pathway No. : 870 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
100 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[32] Pathway No. : 876 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
101 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[32] Pathway No. : 876 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
102 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[32] Pathway No. : 876 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
103 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[33] Pathway No. : 882 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
104 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[33] Pathway No. : 882 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
105 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[33] Pathway No. : 882 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
106 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[34] Pathway No. : 888 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
107 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[34] Pathway No. : 888 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
108 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[34] Pathway No. : 888 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
109 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[35] Pathway No. : 894 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
110 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[35] Pathway No. : 894 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
111 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[35] Pathway No. : 894 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
112 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[36] Pathway No. : 900 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
113 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[36] Pathway No. : 900 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
114 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[36] Pathway No. : 900 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
115 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[37] Pathway No. : 906 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
116 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[37] Pathway No. : 906 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
117 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[37] Pathway No. : 906 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |
118 | PKC-active / PKC-act-raf
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[38] Pathway No. : 912 | 20.0005 | 4 | 4 | explicit E-S complex | Substrate craf-1
Product craf-1*
|
| Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC |
119 | PKC-active / PKC-inact-GAP
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[38] Pathway No. : 912 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate GAP
Product GAP*
|
| Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review. |
120 | PKC-active / PKC-act-GEF
| Ajay_Bhalla_ 2007_ReacDiff2 Accession No. : 83 | kinetics[38] Pathway No. : 912 | 3.33333 | 4 | 4 | explicit E-S complex | Substrate inact-GEF
Product GEF*
|
| Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X |