| | Enzyme Molecule / Enzyme Activity | Accession Name | Pathway Name | Km (uM) | kcat (s^-1) | Ratio | Enzyme Type | Reagents |
| 1 | CycD / k20_lambdaD | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100 | 3300 | 4 | explicit E-S complex | Substrate Rb
Product Rb_P
|
| | With a low Km, rate ~ kcat. Here we have rate = k20 * lambda_d = 10 * 3.3 = 33. 7 Apr 2005. Actually should have the substrate term in here. Use the form Km >> substrate, so rate = kcat * sub * enz / Km so kcat = Km * k20 * lambda_d = 10 * 10 * 3.3 = 330 |
| 2 | CycD / k20_lambdaD[1] | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100 | 3300 | 4 | explicit E-S complex | Substrate E2FAP.Rb
Product E2FAP Rb_P
|
| | With a low Km, rate ~ kcat. Here we have rate = k20 * lambda_d = 10 * 3.3 = 33. 7 Apr 2005. Actually should have the substrate term in here. Use the form Km >> substrate, so rate = kcat * sub * enz / Km so kcat = Km * k20 * lambda_d = 10 * 10 * 3.3 = 330 The idea here is that these reactions phosphorylate the Rb protein attached to E2FAP, so that Rb_P is released and E2FAP is left. |
| 3 | CycD / k20_lambdaD[2] | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100 | 3300 | 4 | explicit E-S complex | Substrate E2FA.Rb
Product E2FA Rb_P
|
| | With a low Km, rate ~ kcat. Here we have rate = k20 * lambda_d = 10 * 3.3 = 33. 7 Apr 2005. Actually should have the substrate term in here. Use the form Km >> substrate, so rate = kcat * sub * enz / Km so kcat = Km * k20 * lambda_d = 10 * 10 * 3.3 = 330 The idea here is that these reactions phosphorylate the Rb protein attached to E2FA, so that Rb_P is released and E2FA is left. |
| 4 | CycE / k20_lambdaE | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100.002 | 5000 | 4 | explicit E-S complex | Substrate Rb
Product Rb_P
|
| | For Km ~ 0, rate ~ kcat. rate = k20 * lambdaE = 10 * 5 7 Apr 2005. Actually need to put in substrate term too. Let Km = 10 >> sub. Then, rate ~ kcat * sub * prd /Km so kcat = Km * k20 * lambdaE = 10 * 10 * 5 = 500 |
| 5 | CycE / k20_lambdaE[1] | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100.002 | 5000 | 4 | explicit E-S complex | Substrate E2FAP.Rb
Product E2FAP Rb_P
|
| | For Km ~ 0, rate ~ kcat. rate = k20 * lambdaE = 10 * 5 7 Apr 2005. Actually need to put in substrate term too. Let Km = 10 >> sub. Then, rate ~ kcat * sub * prd /Km so kcat = Km * k20 * lambdaE = 10 * 10 * 5 = 500 |
| 6 | CycE / k20_lambdaE[2] | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100.002 | 5000 | 4 | explicit E-S complex | Substrate E2FA.Rb
Product E2FA Rb_P
|
| | For Km ~ 0, rate ~ kcat. rate = k20 * lambdaE = 10 * 5 7 Apr 2005. Actually need to put in substrate term too. Let Km = 10 >> sub. Then, rate ~ kcat * sub * prd /Km so kcat = Km * k20 * lambdaE = 10 * 10 * 5 = 500 |
| 7 | CycA / k20_lambdaA | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100 | 3000 | 4 | explicit E-S complex | Substrate Rb
Product Rb_P
|
| | Km ~ 0, so rate ~ kcat. Here rate = k20 * lambdaA = 10 * 3 7 Apr 2005: Fix it: rate should have substrate term in it. Set Km = 10 >> substrate. Then, kcat = Km * k20 * lambdaA = 10 * 10 * 3 = 300 |
| 8 | CycA / k20_lambdaA[1] | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100 | 3000 | 4 | explicit E-S complex | Substrate E2FAP.Rb
Product E2FAP Rb_P
|
| | Km ~ 0, so rate ~ kcat. Here rate = k20 * lambdaA = 10 * 3 7 Apr 2005: Fix it: rate should have substrate term in it. Set Km = 10 >> substrate. Then, kcat = Km * k20 * lambdaA = 10 * 10 * 3 = 300 |
| 9 | CycA / k20_lambdaA[2] | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100 | 3000 | 4 | explicit E-S complex | Substrate E2FA.Rb
Product E2FA Rb_P
|
| | Km ~ 0, so rate ~ kcat. Here rate = k20 * lambdaA = 10 * 3 7 Apr 2005: Fix it: rate should have substrate term in it. Set Km = 10 >> substrate. Then, kcat = Km * k20 * lambdaA = 10 * 10 * 3 = 300 |
| 10 | CycB / k20_lambdaB | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100.002 | 5000 | 4 | explicit E-S complex | Substrate Rb
Product Rb_P
|
| | With Km ~ 0, rate ~ kcat. Here rate = k20 * lambdaB = 10 * 5 7 Apr 2005. Changed to include substrate term. Use Km = 10 >> sub, so kcat = Km * k20 * lambdaB = 10 * 10 * 5 = 500 |
| 11 | CycB / k20_lambdaB[1] | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100.002 | 5000 | 4 | explicit E-S complex | Substrate E2FAP.Rb
Product E2FAP Rb_P
|
| | With Km ~ 0, rate ~ kcat. Here rate = k20 * lambdaB = 10 * 5 7 Apr 2005. Changed to include substrate term. Use Km = 10 >> sub, so kcat = Km * k20 * lambdaB = 10 * 10 * 5 = 500 |
| 12 | CycB / k20_lambdaB[2] | Mammalian_cell_ cycle Accession No. : 85 | CELLDIV Pathway No. : 1070 | 100.002 | 5000 | 4 | explicit E-S complex | Substrate E2FA.Rb
Product E2FA Rb_P
|
| | With Km ~ 0, rate ~ kcat. Here rate = k20 * lambdaB = 10 * 5 7 Apr 2005. Changed to include substrate term. Use Km = 10 >> sub, so kcat = Km * k20 * lambdaB = 10 * 10 * 5 = 500 |