NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Accession Type:
Pathway
Chemotaxis
Chemotaxis
 Molecule
 Reaction

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Reaction List for pathway Chemotaxis (Pathway Number 226)

Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reactions is not considered.
  Name KfKbKdtauSubstrateProduct
1 Autodephosphoryl
ation
1
(s^-1)
0
(s^-1)
--CheBp
CheB
  Autodephosphorylation of CheBp Kf = 1 /sec Kb = 0 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 2 pp.475 Reaction Scheme 10
2 Autodephosphoryl
ation[1]
0.037
(s^-1)
0
(s^-1)
--CheYp
CheY
  Tar-CheW complex TW = 1.88e-06 M = 1.88 uM As per Signal entry 3 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
3 Autophosphorylat
ion
0.001
(s^-1)
0
(s^-1)
--CheA
CheAp
  Autophosphorylation of CheA by ATP Kf = 0.001 /sec Kb = 0 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 2 pp.475 Reaction Scheme 1
4 Autophosphorylat
ion[1]
0.0757
(uM^-1 s^-1)
0
(s^-1)
--TWA
CheA
CheAp
  TWA stimulated autophosphorylation of CheA TWA is complex of Tar, CheW and CheA Kf = 7.57*10e+04 /sec/M = 0.0757 /sec/uM As per Reaction 9 in 1REACT.BCT provided by Matthew Levin Kf = 5.9*10e+4 /sec/M = 0.059 /sec/uM Kb = 0 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 2 pp.475 Reaction Scheme 2
5 Autophosphorylat
ion[2]
0
()
0
(s^-1)
--        -CheYp
  Autophosphorylation of CheY, Paper says reaction not applicable Table 2 pp.475 Reaction Scheme 6, kf = 0/sec kb = 0/sec
As per Reaction 14 in 1REACT.BCT provided by Matthew Levin Bray et al 1993, Mol.Biol.Cell 4: 469-482
6 Autophosphorylat
ion[3]
1
(uM^-1 s^-1)
0
(s^-1)
--TnWA
CheA
CheAp
  Aspartate bound Tar and CheW complex TaW = 0 M As per Signal 7 in 1SIG_B.BCT Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
7 Binding0.001
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 1000.028(uM)-Ni
Tar
Tn
  Binding of Tar and Ni Kf = 1 * 10e+03 /sec/M = 0.001 /sec/uM Kb = 1 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 3 pp.476 Reaction Scheme 2
8 Binding[10]0.4
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 2.5(uM)-Tn
WA
TnWA
  Binding of Tn and CheW-CheA complex Kf = 4e+05 /sec/M = 0.4 /sec/uM Kb = 1 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 3 pp.476 Reaction Scheme 8 Footnote states that ligands do not have any effect on the formation of complexes so same rates are used for Aspartate or Ni associated Tar complexes.
9 Binding[11]0.4
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 2.5(uM)-TA
WA
TaWA
  Binding of Ta and CheW-CheA complex Kf = 4e+05 /sec/M = 0.4 /sec/uM Kb = 1 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 3 pp.476 Reaction Scheme 8 Footnote states that ligands do not have any effect on the the formation of complexes so same rates are used for Aspartate or Ni associated Tar complexes.
10 Binding[1]1.28
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 0.7813(uM)-Aspartate
Tar
TA
  Binding of Aspartate with Tar Kd = 0.78 uM Dunten and Koshland, 1991 Kf = 1.28e+06 /sec/M = 1.28 /sec/uM here scaled by 5 As per Reaction 0 in 1REACT.BCT provided by Matthew Levin Kf = 1.0e+06 /sec/M = 1 /sec/uM; Kb = 1 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 3 pp.476 Reaction Scheme 1
11 Binding[2]0.4
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 2.5(uM)-TW
CheA
TWA
  MYpYpYpYp = 1.51e-09 M = 1.51e-3 uM As per Signal 27 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
12 Binding[3]0.05
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 19.9999(uM)-Tar
CheA
TA
  Tar-Asp-CheA complex TaA = 0 M As per Signal 10 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
13 Binding[4]0.05
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 19.9999(uM)-Tn
CheA
TnA
  Bias calculated as per formula stated on pp.471 Bias = [M + MYp] / [M + MYp + MYpYp + MYpYpYp + MYpYpYpYp] Bray et al 1993, Mol.Biol.Cell 4: 469-482 Initialy set to 0.7
14 Binding[5]0.4
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 2.5(uM)-TnW
CheA
TnWA
  MYp = 9.53*e-10 M = 9.53*e-4 uM As per Signal 24 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
15 Binding[6]0.4
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 2.5(uM)-TaW
CheA
TaWA
  Motor = 8.5 molecules per cell As per Enzyme entry 7 in 1ENZ.BCT provided by Matthew Levin Motor = 6.73e-9 M = 6.73e-3 uM As per Signal 23 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
16 Binding[7]0.05
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 19.9999(uM)-TA
CheA
TaA
  Binding of Tar-Aspartate and CheA Kf = 0.05 /sec/uM as per Reaction 3 in 1REACT.BCT Kf = 1e+04 /sec/M = 0.01 /sec/uM Kb = 1 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 3 pp.476 Reaction Scheme 4 Footnote states that ligands do not have any effect on the formation of complexes so same rates are used for Aspartate or Ni associated Tar complexes.
17 Binding[9]0.4
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 2.5(uM)-WA
Tar
TWA
  Binding of Tar and CheW-CheA complex Kd = 2 uM and therefore Kf also suggested as 0.5 /sec/uM Kf = 4e+05 /sec/M = 0.4 /sec/uM Kb = 1 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 3 pp.476 Reaction Scheme 8
18 Complexing0.1
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 10.0003(uM)-CheW
Tar
TW
  CheYp = 1.24e-07 M = 1.24e-01 uM As per Signal 22 in 1SIG_B.BCT provided by Matthew Levin CheYp = 1e-08 M = 1e-2 uM As per Set_Yp configuration in 1CONFIG.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
19 Complexing[10]0.05
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 19.9999(uM)-CheW
CheA
WA
20 Complexing[1]0.1
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 10.0003(uM)-Tn
CheW
TnW
  Nickel bound Tar and CheW complex TnW = 0.0 uM As per Signal 8 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
21 Complexing[2]0.1
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 10.0003(uM)-TA
CheW
TaW
  Complex formation of aspartate bound Tar and CheW Kf = 1 * 10e+05 /sec/M = 0.1 /sec/uM Kb = 1 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482; Table 3 pp.476 Reaction Scheme 3 Footnote states that ligands do not have any effect on the formation of complexes so same rates are used for Aspartate or Ni associated Tar complexes.
22 Complexing[3]88.0009
(uM^-1 s^-1)
5.5
(s^-1)
Kd(bf) = 0.0625(uM)-CheYp
Motor
MYp
  CheYp complexes with Flagellar Motor (M) Kf = 0.88/Set_Yp = 0.88/1e-08 /sec/M = 0.88e+2/sec/uM Kb = 5.5 /sec As per EXEC.C provided by Matthew Levin Bray et al 1993, Mol.Biol.Cell 4: 469-482
23 Complexing[4]285
(uM^-1 s^-1)
6.64
(s^-1)
Kd(bf) = 0.0233(uM)-CheYp
MYp
MYpYp
  CheYp complexes with MYp Kf = 2.85/Set_Yp = 2.85/1e-08 /sec/M = 2.85e+2/sec/uM Kb = 6.64 /sec As per EXEC.C provided by Matthew Levin Bray et al 1993, Mol.Biol.Cell 4: 469-482
24 Complexing[5]693.999
(uM^-1 s^-1)
5.1
(s^-1)
Kd(bf) = 0.0073(uM)-CheYp
MYpYp
MYpYpYp
  Tar-Ni-CheW-CheA complex TnWA = 0 M As per Signal 15 in 1SIG.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
25 Complexing[6]2006.97
(uM^-1 s^-1)
5.5
(s^-1)
Kd(bf) = 0.0027(uM)-CheYp
MYpYpYp
MYpYpYpYp
  CheYp complexes with MYpYpYp Kf = 20.07/Set_Yp = 20.07/1e-08 /sec/M = 20.07e+2 /sec/uM Kb = 5.5 /sec As per EXEC.C provided by Matthew Levin Bray et al 1993, Mol.Biol.Cell 4: 469-482
26 Complexing[7]0.4
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 2.5(uM)-TA
CheW
TWA
  Denominator value to calculate bias as stated on pp.471 Bias = [M + MYp] / [M + MYp + MYpYp + MYpYpYp + MYpYpYpYp] Bray et al 1993, Mol.Biol.Cell 4: 469-482
27 Complexing[8]0.4
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 2.5(uM)-TnA
CheW
TnWA
  TnA and CheW complex formation Kf = 4*10e+05 /sec/M = 0.4 /sec/uM Kb = 1 /sec Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 3 pp.476 Reaction Scheme 7 Footnote states that ligands do not have any effect on the formation of Tar-CheW-CheA complex so same rates are used for Aspartate or Ni associated Tar complexes.
28 Complexing[9]0.4
(uM^-1 s^-1)
1
(s^-1)
Kd(bf) = 2.5(uM)-TaA
CheW
TaWA
29 Dephosphorylatio
n
0.5
(uM^-1 s^-1)
0
(s^-1)
--CheYp
CheZ
CheY
  Ni bound Tar Ni-Tar = 0 M As per Signal 4 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
30 Dephosphorylatio
n[1]
99.9972
(uM^-1 s^-1)
0
(s^-1)
--CheYp
TaWA
CheY
  MYpYpYp = 4.47e-10 M = 4.47e-4 uM As per Signal 26 in 1SIG_B.BCT provided by Matthew Levin Cell volume = 1.41e-15 L Table 1 pp.474 Bray et al 1993, Mol.Biol.Cell 4: 469-482
31 Phosphotransfer1
(uM^-1 s^-1)
0
(uM^-1 s^-1)
--CheAp
CheB
CheBp
CheA
  Phosphotransfer from CheAp to CheB Kf = 1 * 10e6 /sec/M = 1 /sec/uM Kb = 0 /sec/M Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 2 pp.475 Reaction Scheme 9
32 Phosphotransfer[
1]
0.27
(uM^-1 s^-1)
0
(uM^-1 s^-1)
--CheAp
CheY
CheYp
CheA
  Phosphotransfer from CheAp to CheY Kf = 2 * 10e+05 /sec/M = 0.2 /sec/uM Kb = 0 /sec/M Bray et al 1993, Mol.Biol.Cell 4: 469-482 Table 2 pp.475 Reaction Scheme 5


Pathway Details   Molecule List  Enzyme List  Reaction List  


Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.