|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for IP3R | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics |
IP3R participated as | Molecule | Sum total of | Enzyme | Substrate of an enzyme | Product of an enzyme | Substrate in Reaction | Product in Reaction | No. of occurrences | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | NonOsc_Ca_ IP3metabolism | 23 | Network | MIPP, CaMKII, CaM, PKC, IP3-3K, CaRegulation, Gq, PLCbeta, 134_dephos, 145_dephos, IP4-system, IHP-system, 1345_dephos | This network models detailed metabolism of Ins(145)P3, integrated with GPCR mediated PLCbeta activation and Ca release by the InsP3 receptor in the neuron. The calcium response is non-oscillatory. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316. |
IP3R acting as a Molecule in NonOsc_Ca_IP3metabolism Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | IP3R | NonOsc_Ca_ IP3metabolism Accession No. : 23 | CaRegulation Pathway No. : 110 | 0.0166 | 1000 | No | The number of the IP3Rs in the cell is present only implicitly in the model, and is lumped in with the total permeability of the IP3R pool. The latter is constrained by the height of the Ca transient. |
IP3R acting as a Substrate in a reaction in NonOsc_Ca_IP3metabolism Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | IP3Rbind | NonOsc_Ca_ IP3metabolism Accession No. : 23 | CaRegulation Pathway No. : 110 | 0.05 (uM^-3 s^-1) | 1 (s^-1) | Kd(af) = 2.7144(uM) | - | Substrate IP3 IP3 IP3 IP3R
Product IP3R*
| Based on Lauffenburger and Linderman 1993 Receptors pg 200. The binding of IP3 on this reaction had a Hill coeff of 3. The eqns of Mahama and Linderman (cited in the book as 1993 a) are equivalent to the binding all occurring in a single step, so that is how I do it in this version. Their Ki1 is 0.07 uM. Lots of other data sources: Ramos-Franco et al, Biophys J 75, 1998: 834-39 have Ca sensitivity curves. At 250 nM free Ca, the EC50 for type1 is 58 nM and type 2 is 194 nM. Type 3 would be about 2 uM according to Newton et al, JBC 268(46), 1994: 28613-19. For the purposes of this model we use a Kd of 2.7 uM which is high but maybe OK at low calcium. The details of Ca interaction with the IP3R are not included in this model. |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|