|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for Rec-Gq | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | NonOsc_Ca_ IP3metabolism | 23 | Network | MIPP, CaMKII, CaM, PKC, IP3-3K, CaRegulation, Gq, PLCbeta, 134_dephos, 145_dephos, IP4-system, IHP-system, 1345_dephos | This network models detailed metabolism of Ins(145)P3, integrated with GPCR mediated PLCbeta activation and Ca release by the InsP3 receptor in the neuron. The calcium response is non-oscillatory. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316. |
Rec-Gq acting as a Molecule in NonOsc_Ca_IP3metabolism Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | Rec-Gq | NonOsc_Ca_ IP3metabolism Accession No. : 23 | Gq Pathway No. : 111 | 0 | 1000 | No | Turns out that a large fraction of the the receptor binds to the G-protein even in the absence of ligand. This pool represents this step. Fraction of Rec-Gq is 44% of receptor, from Fay et al 1991 Biochem 30:5066-5075 Since this is not the same receptor, this value is a bit doubtful. Still, we adjust the rate consts in Rec-bind-Gq to match. |
Rec-Gq acting as a Substrate in a reaction in NonOsc_Ca_IP3metabolism Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | Glu-bind-Rec-Gq | NonOsc_Ca_ IP3metabolism Accession No. : 23 | Gq Pathway No. : 111 | 16.8 (uM^-1 s^-1) | 0.1 (s^-1) | Kd(bf) = 0.006(uM) | - | Substrate Glu Rec-Gq
Product Rec-Glu-Gq
| | From Fay et al kb3 = kb = 1.06e-3 which is rather slow. k+1 = kf = 2.8e7 /M/sec= 4.67e-5/sec use 5e-5. However, the Kd from Martin et al may be more appropriate, as this is Glu not the system from Fay. kf = 2.8e-5, kb = 10 Let us compromise. since we have the Fay model, keep kf = k+1 = 2.8e-5. But kb (k-3) is .01 * k-1 from Fay. Scaling by .01, kb = .01 * 10 = 0.1 | 2 | Antag-bind-Rec-G q | NonOsc_Ca_ IP3metabolism Accession No. : 23 | Gq Pathway No. : 111 | 60 (uM^-1 s^-1) | 0.01 (s^-1) | Kd(bf) = 0.0002(uM) | - | Substrate Rec-Gq mGluRAntag
Product Blocked-rec-Gq
| | The rate consts give a total binding affinity of under 0.2 nM, good for a strong antagonist. |
Rec-Gq acting as a Product in a reaction in NonOsc_Ca_IP3metabolism Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | Rec-bind-Gq | NonOsc_Ca_ IP3metabolism Accession No. : 23 | Gq Pathway No. : 111 | 0.6 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 1.6667(uM) | - | Substrate G-GDP mGluR
Product Rec-Gq
| From Berstein et al 1992 JBC 267(12):8081-8088 we know that 15-40% of Gq binds, GTP_gamma_S. Also about 20-30% of Gq is bound to GTP. To get to these values the receptor-Gq amount should be similar. These rates are designed to give that steady state with a fast tau of 1 sec. |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|