NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for PLCrP

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
PLCrP participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1101011

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • EGFR_Signaling_
    pathway
  • 52Pathway
    EGFR 
    This model is based on the model and parameters published in paper: Quantification of Short Term Signaling by the EGFR Kholodenko et al, The J Biol Chem. , Vol 274, No. 42, Issue of October 15, pp. 30169 - 30181, 1999.
    Note: There are a few small ambiguities in the paper about initial conditions employed for obtaining the results. Thanks to Dr. Kholodenko for clarifying those ambiguities and providing the values used in the simulations:[G-S]=33.04579, [Grb]=51.95431, [SOS]=0.95421.

    PLCrP acting as a Molecule in  
    EGFR_Signaling_pathway Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    PLCrP
  • EGFR_Signaling_
    pathway

    Accession No. : 52
  • EGFR
    Pathway No. : 223
    01.6667E-6No
    Taken from Kholodenko BN et al J Biol Chem. (1999) 274(42):30169-81.

    PLCrP acting as a Summed Molecule in  
    EGFR_Signaling_pathway Network
    Accession NamePathway NameTargetInput
  • EGFR_Signaling_
    pathway

    Accession No. : 52
  • EGFR
    Pathway No. : 223
    pPLCrR-PLP
    PLCrP
    Taken from Kholodenko BN et al J Biol Chem. (1999) 274(42):30169-81. Total Phosphorylated PLCr = [R-PLP] + [PLCrP].

    PLCrP acting as a Substrate for an Enzyme in  
    EGFR_Signaling_pathway Network
    Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    enz8  /
    r8
  • EGFR_Signaling_
    pathway

    Accession No. : 52
  • EGFR
    Pathway No. : 223
    0.114Classical Michaelis-Menten
    V = Etot.S.Kcat/Km+S
    Substrate
    PLCrP

    Product
    PLCr
    Taken from Kholodenko BN et al J Biol Chem. (1999) 274(42):30169-81.

    PLCrP acting as a Substrate in a reaction in  
    EGFR_Signaling_pathway Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
    r25
  • EGFR_Signaling_
    pathway

    Accession No. : 52
  • EGFR
    Pathway No. : 223
    1
    (s^-1)
    0.03
    (s^-1)
    Keq = 0.03(uM)0.971secSubstrate
    PLCrP

    Product
    PLCr-I
    Taken from Kholodenko BN et al J Biol Chem. (1999) 274(42):30169-81.

    PLCrP acting as a Product in a reaction in  
    EGFR_Signaling_pathway Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
    NameAccession NamePathway NameKfKbKdtauReagents
    r7
  • EGFR_Signaling_
    pathway

    Accession No. : 52
  • EGFR
    Pathway No. : 223
    0.3
    (s^-1)
    6
    (uM^-1 s^-1)
    Kd(cb) = 20(uM)-Substrate
    R-PLP

    Product
    PLCrP
    RP
    Taken from Kholodenko BN et al J Biol Chem. (1999) 274(42):30169-81.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.