NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for Glu

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
Glu participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000020

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Ajay_Bhalla_
    2004_Feedback_
    Tuning
  • 78Network
    Shared_Object_Ajay_Bhalla_2004_Feedback_Tuning PKC PLA2 
    PLCbeta Gq MAPK 
    Ras EGFR Sos 
    PLC_g CaMKII CaM 
    PP1 PP2B PKA 
    AC 
    This model is taken from Ajay SM, Bhalla US. Eur J Neurosci. 2004 Nov;20(10):2671-80. This is the feedback model from Figure 8a.

    Glu acting as a Molecule in  
    Ajay_Bhalla_2004_Feedback_Tuning Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    Glu
  • Ajay_Bhalla_
    2004_Feedback_
    Tuning

    Accession No. : 78
  • Shared_Object_
    Ajay_Bhalla_
    2004_Feedback_
    Tuning

    Pathway No. : 347
  • 01.5Yes
    Varying the amount of (steady state) glu between .01 uM and up, the final amount of G*GTP complex does not change much. This means that the system should be reasonably robust wr to the amount of glu in the synaptic cleft. It would be nice to know how fast it is removed.

    Glu acting as a Substrate in a reaction in  
    Ajay_Bhalla_2004_Feedback_Tuning Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1
  • RecLigandBinding
  • Ajay_Bhalla_
    2004_Feedback_
    Tuning

    Accession No. : 78
  • Gq
    Pathway No. : 351
    16.8003
    (uM^-1 s^-1)
    10
    (s^-1)
    Kd(bf) = 0.5952(uM)-Substrate
    Glu
    mGluR

    Product
    Rec-Glu
      kf = kf from text = 1e7 / M / sec = 10 /uM/sec = 10 / 6e5 / # / sec = 1.67e-5 kb = kr from text = 60 / sec Note that we continue to use uM here since [phenylephrine] is also in uM. From Martin et al FEBS Lett 316:2 191-196 1993 we have Kd = 600 nM Assuming kb = 10/sec, we get kf = 10/(0.6 uM * 6e5) = 2.8e-5 1/sec/#
    2Glu-bind-Rec-Gq
  • Ajay_Bhalla_
    2004_Feedback_
    Tuning

    Accession No. : 78
  • Gq
    Pathway No. : 351
    16.8003
    (uM^-1 s^-1)
    0.1
    (s^-1)
    Kd(bf) = 0.006(uM)-Substrate
    Glu
    Rec-Gq

    Product
    Rec-Glu-Gq
      From Fay et al kb3 = kb = 1.06e-3 which is rather slow. k+1 = kf = 2.8e7 /M/sec= 4.67e-5/sec use 5e-5. However, the Kd from Martin et al may be more appropriate, as this is Glu not the system from Fay. kf = 2.8e-5, kb = 10 Let us compromise. since we have the Fay model, keep kf = k+1 = 2.8e-5. But kb (k-3) is .01 * k-1 from Fay. Scaling by .01, kb = .01 * 10 = 0.1



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.