NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for CaM-GEF

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
CaM-GEF participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences25025002449

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13
  • 82NetworkShared_Object_Ajay_Bhalla_2007_ReacDiff1_1e-13 
    PKC MAPK Ras CaM PKM chain kinetics PKC MAPK Ras CaM PKM kinetics[1] 
    PKC MAPK Ras CaM PKM kinetics[2] PKC MAPK Ras CaM PKM kinetics[3] 
    PKC MAPK Ras CaM PKM kinetics[4] PKC MAPK Ras CaM PKM kinetics[5] 
    PKC MAPK Ras kinetics[6] CaM PKM PKC MAPK Ras CaM PKM kinetics[7] 
    PKC MAPK Ras CaM PKM kinetics[8] PKC MAPK Ras CaM PKM kinetics[9] 
    PKC MAPK Ras CaM PKM kinetics[10] PKC MAPK Ras CaM PKM kinetics[11] 
    PKC MAPK Ras CaM PKM kinetics[12] PKC MAPK Ras CaM PKM kinetics[13] 
    PKC MAPK Ras CaM PKM kinetics[14] PKC MAPK Ras CaM PKM kinetics[15] 
    PKC MAPK Ras CaM PKM kinetics[16] PKC MAPK Ras CaM PKM kinetics[17] 
    PKC MAPK Ras CaM PKM kinetics[18] PKC MAPK Ras CaM PKM kinetics[19] 
    PKC MAPK Ras CaM PKM kinetics[20] PKC MAPK Ras CaM PKM kinetics[21] 
    PKC MAPK Ras CaM PKM kinetics[22] PKC MAPK Ras CaM PKM kinetics[23] 
    PKC MAPK Ras CaM PKM 
    This is a 25-compartment reaction-diffusion version of the Ajay_Bhalla_2007_PKM model. The original single-compartment model is repeated 25 times. In addition, a subset (27 out of 42) molecules can diffuse between compartments. Diffusion is implemented as a reaction between corresponding molecules in neighboring compartments. For D = 1e-12 m^2/sec (i.e., 1 micron^2/sec ) the kf and kb of this reaction for these 10 micron compartments are both 0.01/sec. For D = 1e-13 m^2/sec (i.e., 0.1 micron^2/sec ) the kf and kb are 0.001/sec.
    The stimulus file pkm_mapk22_diff_1e-13_Fig4B which was used for the model to replicate Figure 4B from the paper.
    pkm_mapk22_diff_1e-13_Fig4H replicate Figure 4H.
    pkm_mapk22_diff_1e-13_Fig4I replicate Figure 4I.

    CaM-GEF acting as a Molecule in  
    Ajay_Bhalla_2007_ReacDiff1_1e-13 Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 529
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 536
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 542
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 548
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 554
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 560
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 566
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 572
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 578
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 584
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 590
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 596
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 602
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 608
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 614
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 620
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 626
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 632
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 638
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 644
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 650
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 656
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 662
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 668
    01.5No
    See Farnsworth et al Nature 376 524-527 1995
    CaM-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 674
    01.5No
    See Farnsworth et al Nature 376 524-527 1995

    CaM-GEF acting as an Enzyme in  
    Ajay_Bhalla_2007_ReacDiff1_1e-13 Network
     Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    1CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 529
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    2CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 536
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    3CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 542
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    4CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 548
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    5CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 554
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    6CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 560
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    7CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 566
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    8CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 572
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    9CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 578
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    10CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 584
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    11CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 590
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    12CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 596
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    13CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 602
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    14CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 608
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    15CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 614
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    16CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 620
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    17CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 626
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    18CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 632
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    19CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 638
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    20CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 644
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    21CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 650
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    22CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 656
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    23CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 662
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    24CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 668
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.
    25CaM-GEF /
    CaM-GEF-act-ras
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 674
    0.5050570.24explicit E-S complexSubstrate
    GDP-Ras

    Product
    GTP-Ras
        Kinetics same as GEF-bg_act-ras, but as of March 17, 2006, the kcat is scaled from 0.02 to 0.2 to have a stronger Ca response for the direct MAPK input.

    CaM-GEF acting as a Substrate in a reaction in  
    Ajay_Bhalla_2007_ReacDiff1_1e-13 Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    2diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    3diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    4diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    5diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    6diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    7diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    8diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    9diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    10diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    11diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    12diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    13diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    14diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    15diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    16diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    17diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    18diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    19diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    20diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    21diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    22diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    23diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    24diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF

    CaM-GEF acting as a Product in a reaction in  
    Ajay_Bhalla_2007_ReacDiff1_1e-13 Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 529
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    2diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    3CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 536
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    4diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    5CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 542
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    6diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    7CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 548
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    8diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    9CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 554
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    10diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    11CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 560
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    12diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    13CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 566
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    14diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    15CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 572
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    16diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    17CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 578
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    18diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    19CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 584
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    20diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    21CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 590
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    22diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    23CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 596
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    24diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    25CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 602
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    26diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    27CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 608
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    28diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    29CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 614
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    30diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    31CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 620
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    32diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    33CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 626
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    34diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    35CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 632
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    36diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    37CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 638
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    38diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    39CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 644
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    40diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    41CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 650
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    42diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    43CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 656
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    44diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    45CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 662
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    46diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    47CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 668
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995
    48diff
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Pathway No. : 526
  • 0.001
    (s^-1)
    0.001
    (s^-1)
    Keq = 1(uM)500secSubstrate
    CaM-GEF

    Product
    CaM-GEF
    49CaM-bind-GEF
  • Ajay_Bhalla_
    2007_ReacDiff1_
    1e-13

    Accession No. : 82
  • Ras
    Pathway No. : 674
    199.995
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.005(uM)-Substrate
    CaM-Ca4
    inact-GEF

    Product
    CaM-GEF
      We have no numbers for this. It is probably between the two extremes represented by the CaMKII phosph states, and I have used guesses based on this. kf=1e-4 kb=1 The reaction is based on Farnsworth et al Nature 376 524-527 1995



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.