|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for PLA2-cytosolic | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Ajay_Bhalla_ 2007_Bistable | 79 | Network | Shared_Object_Ajay_Bhalla_2007_Bistable, PKC, PLA2, MAPK, Ras, CaM | This is a model of ERKII signaling which is bistable due to feedback. The feedback occurs through ERKII phosphorylation of phospholipase A2 (PLA2), leading to increased production of arachidonic acid (AA), which activates protein kinase C (PKC) which activates c-Raf which is upstream of ERKII. The model is a highly simplified variant of more detailed bistable models of MAPK signaling (Bhalla US, Iyengar R. Science. 1999 Jan 15;283(5400):381-7, Ajay SM, Bhalla US. Eur J Neurosci. 2004 Nov;20(10):2671-80) |
PLA2-cytosolic acting as a Molecule in Ajay_Bhalla_2007_Bistable Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | PLA2-cytosolic | Ajay_Bhalla_ 2007_Bistable Accession No. : 79 | PLA2 Pathway No. : 365 | 0.4 | 125.7 | No | Calculated cytosolic was 20 nm from Wijkander and Sundler However, Leslie and Channon use about 400 nM. Need to confirm, but this is the value I use here. Another recalc of W&S gives 1uM |
PLA2-cytosolic acting as a Substrate for an Enzyme in Ajay_Bhalla_2007_Bistable Network
Enzyme Molecule / Enzyme Activity | Accession Name | Pathway Name | Km (uM) | kcat (s^-1) | Ratio | Enzyme Type | Reagents | MAPK* / MAPK* | Ajay_Bhalla_ 2007_Bistable Accession No. : 79 | Shared_Object_ Ajay_Bhalla_ 2007_Bistable Pathway No. : 363 | 25.6402 | 10 | 4 | explicit E-S complex | Substrate PLA2-cytosolic
Product PLA2*
| Km = 25uM @ 50 uM ATP and 1mg/ml MBP (huge XS of substrate) Vmax = 4124 pmol/min/ml at a conc of 125 pmol/ml of enz, so: k3 = .5/sec (rate limiting) k1 = (k2 + k3)/Km = (.5 + 0)/(25*6e5) = 2e-8 (#/cell)^-1 #s from Sanghera et al JBC 265 pp 52 , 1990. From Nemenoff et al JBC 268(3):1960-1964 - using Sanghera's 1e-4 ratio of MAPK to protein, we get k3 = 7/sec from 1000 pmol/min/mg fig 5 |
PLA2-cytosolic acting as a Substrate in a reaction in Ajay_Bhalla_2007_Bistable Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
PLA2-cytosolic acting as a Product in a reaction in Ajay_Bhalla_2007_Bistable Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | dephosphorylate- PLA2* | Ajay_Bhalla_ 2007_Bistable Accession No. : 79 | PLA2 Pathway No. : 365 | 0.17 (s^-1) | 0 (s^-1) | - | - | Substrate PLA2*
Product PLA2-cytosolic
|
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|