|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for temp-PIP2 | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics |
temp-PIP2 participated as | Molecule | Sum total of | Enzyme | Substrate of an enzyme | Product of an enzyme | Substrate in Reaction | Product in Reaction | No. of occurrences | 1 | 0 | 0 | 0 | 0 | 2 | 0 |
Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Ajay_Bhalla_ 2007_Bistable | 79 | Network | Shared_Object_Ajay_Bhalla_2007_Bistable, PKC, PLA2, MAPK, Ras, CaM | This is a model of ERKII signaling which is bistable due to feedback. The feedback occurs through ERKII phosphorylation of phospholipase A2 (PLA2), leading to increased production of arachidonic acid (AA), which activates protein kinase C (PKC) which activates c-Raf which is upstream of ERKII. The model is a highly simplified variant of more detailed bistable models of MAPK signaling (Bhalla US, Iyengar R. Science. 1999 Jan 15;283(5400):381-7, Ajay SM, Bhalla US. Eur J Neurosci. 2004 Nov;20(10):2671-80) |
temp-PIP2 acting as a Molecule in Ajay_Bhalla_2007_Bistable Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | temp-PIP2 | Ajay_Bhalla_ 2007_Bistable Accession No. : 79 | Shared_Object_ Ajay_Bhalla_ 2007_Bistable Pathway No. : 363 | 2.5 | 125.7 | Yes | This isn't explicitly present in the M&L model, but is obviously needed. I assume its conc is fixed at 1uM for now, which is a bit high. PLA2 is stim 7x by PIP2 @ 0.5 uM (Leslie and Channon BBA 1045:261(1990) Leslie and Channon say PIP2 is present at 0.1 - 0.2mol% range in membs, which comes to 50 nM. Ref is Majerus et al Cell 37 pp 701-703 1984 Lets use a lower level of 30 nM, same ref.... |
temp-PIP2 acting as a Substrate in a reaction in Ajay_Bhalla_2007_Bistable Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|