NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for PKC-active

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
PKC-active participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences2525750000

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Ajay_Bhalla_
    2007_ReacDiff3
  • 84NetworkShared_Object_Ajay_Bhalla_2007_ReacDiff3 PKC PLA2 
    MAPK PLA2 Ras CaM chain kinetics PKC MAPK Ras CaM kinetics[1] 
    PKC PLA2 MAPK Ras CaM kinetics[2] PKC PLA2 MAPK Ras CaM kinetics[3] 
    PKC PLA2 MAPK Ras CaM kinetics[4] PKC PLA2 MAPK Ras CaM kinetics[5] 
    PKC PLA2 MAPK Ras MAPK CaM kinetics[6] PKC PLA2 MAPK Ras 
    CaM kinetics[7] PKC PLA2 MAPK Ras CaM PKC kinetics[8] PLA2 
    MAPK Ras CaM kinetics[9] PKC PLA2 MAPK Ras CaM kinetics[10] 
    PKC PLA2 MAPK Ras CaM kinetics[11] PKC PLA2 MAPK Ras CaM 
    kinetics[12] PKC PLA2 Ras CaM kinetics[13] PKC PLA2 MAPK 
    Ras CaM kinetics[14] PKC PLA2 MAPK Ras CaM kinetics[15] 
    PKC PLA2 MAPK Ras kinetics[16] CaM PKC PLA2 MAPK Ras CaM 
    kinetics[17] PKC PLA2 MAPK Ras CaM kinetics[18] PKC PLA2 
    MAPK Ras CaM kinetics[19] PKC PLA2 MAPK Ras CaM kinetics[20] 
    PKC PLA2 MAPK Ras CaM kinetics[21] PKC PLA2 MAPK Ras CaM 
    kinetics[22] PKC PLA2 MAPK Ras CaM kinetics[23] PKC PLA2 
    MAPK Ras CaM 
    This is a 25-compartment reaction-diffusion version of the Ajay_Bhalla_2007_bistable model. The original single-compartment model is repeated 25 times.
    In addition, a subset (33 out of 50) molecules can diffuse between compartments. Diffusion is implemented as a reaction between corresponding molecules in neighboring compartments. Here D = 1e-13 m^2/sec (i.e., 0.1 micron^2/sec ) so the kf and kb of this reaction for these 10 micron compartments are both 0.001/sec.
    The basal calcium level in this model is held at 95 nM which is rather close to threshold for the flip to the active state. This is necessary to sustain active propagation of activation.
    The stimulus file bis6-propgn_D1e-13_FigEF which was used for the model to replicate Figure 4E and 4F from the paper.

    PKC-active acting as a Molecule in  
    Ajay_Bhalla_2007_ReacDiff3 Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff3

    Pathway No. : 918
  • 0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics
    Pathway No. : 926
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[1]
    Pathway No. : 931
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[2]
    Pathway No. : 937
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[3]
    Pathway No. : 943
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[4]
    Pathway No. : 949
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[5]
    Pathway No. : 955
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[6]
    Pathway No. : 962
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[7]
    Pathway No. : 968
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[8]
    Pathway No. : 975
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[9]
    Pathway No. : 980
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[10]
    Pathway No. : 986
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[11]
    Pathway No. : 992
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[12]
    Pathway No. : 998
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[13]
    Pathway No. : 1003
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[14]
    Pathway No. : 1009
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[15]
    Pathway No. : 1015
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[16]
    Pathway No. : 1020
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[17]
    Pathway No. : 1027
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[18]
    Pathway No. : 1033
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[19]
    Pathway No. : 1039
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[20]
    Pathway No. : 1045
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[21]
    Pathway No. : 1051
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[22]
    Pathway No. : 1057
    0.3125.7No
    PKC-active
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[23]
    Pathway No. : 1063
    0.3125.7No

    PKC-active acting as a Summed Molecule in  
    Ajay_Bhalla_2007_ReacDiff3 Network
     Accession NanePathway NameTargetInput
    1
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff3

    Pathway No. : 918
  • PKC-activePKC-DAG-AA*
    PKC-Ca-memb*
    PKC-Ca-AA*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    2
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics
    Pathway No. : 926
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    3
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[1]
    Pathway No. : 931
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    4
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[2]
    Pathway No. : 937
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    5
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[3]
    Pathway No. : 943
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    6
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[4]
    Pathway No. : 949
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    7
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[5]
    Pathway No. : 955
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    8
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[6]
    Pathway No. : 962
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    9
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[7]
    Pathway No. : 968
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    10
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[8]
    Pathway No. : 975
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    11
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[9]
    Pathway No. : 980
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    12
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[10]
    Pathway No. : 986
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    13
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[11]
    Pathway No. : 992
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    14
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[12]
    Pathway No. : 998
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    15
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[13]
    Pathway No. : 1003
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    16
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[14]
    Pathway No. : 1009
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    17
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[15]
    Pathway No. : 1015
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    18
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[16]
    Pathway No. : 1020
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    19
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[17]
    Pathway No. : 1027
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    20
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[18]
    Pathway No. : 1033
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    21
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[19]
    Pathway No. : 1039
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    22
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[20]
    Pathway No. : 1045
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    23
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[21]
    Pathway No. : 1051
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    24
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[22]
    Pathway No. : 1057
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     
    25
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[23]
    Pathway No. : 1063
    PKC-activePKC-DAG-AA*
    PKC-Ca-AA*
    PKC-Ca-memb*
    PKC-DAG-memb*
    PKC-basal*
    PKC-AA*
     

    PKC-active acting as an Enzyme in  
    Ajay_Bhalla_2007_ReacDiff3 Network
     Enzyme Molecule /
    Enzyme Activity
    Accession NamePathway NameKm (uM)kcat (s^-1)RatioEnzyme TypeReagents
    1PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff3

    Pathway No. : 918
  • 66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    2PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff3

    Pathway No. : 918
  • 3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    3PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • Shared_Object_
    Ajay_Bhalla_
    2007_ReacDiff3

    Pathway No. : 918
  • 3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    4PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics
    Pathway No. : 926
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    5PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics
    Pathway No. : 926
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    6PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics
    Pathway No. : 926
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    7PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[1]
    Pathway No. : 931
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    8PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[1]
    Pathway No. : 931
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    9PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[1]
    Pathway No. : 931
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    10PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[2]
    Pathway No. : 937
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    11PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[2]
    Pathway No. : 937
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    12PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[2]
    Pathway No. : 937
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    13PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[3]
    Pathway No. : 943
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    14PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[3]
    Pathway No. : 943
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    15PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[3]
    Pathway No. : 943
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    16PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[4]
    Pathway No. : 949
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    17PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[4]
    Pathway No. : 949
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    18PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[4]
    Pathway No. : 949
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    19PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[5]
    Pathway No. : 955
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    20PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[5]
    Pathway No. : 955
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    21PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[5]
    Pathway No. : 955
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    22PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[6]
    Pathway No. : 962
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    23PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[6]
    Pathway No. : 962
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    24PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[6]
    Pathway No. : 962
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    25PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[7]
    Pathway No. : 968
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    26PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[7]
    Pathway No. : 968
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    27PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[7]
    Pathway No. : 968
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    28PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[8]
    Pathway No. : 975
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    29PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[8]
    Pathway No. : 975
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    30PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[8]
    Pathway No. : 975
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    31PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[9]
    Pathway No. : 980
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    32PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[9]
    Pathway No. : 980
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    33PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[9]
    Pathway No. : 980
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    34PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[10]
    Pathway No. : 986
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    35PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[10]
    Pathway No. : 986
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    36PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[10]
    Pathway No. : 986
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    37PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[11]
    Pathway No. : 992
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    38PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[11]
    Pathway No. : 992
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    39PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[11]
    Pathway No. : 992
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    40PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[12]
    Pathway No. : 998
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    41PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[12]
    Pathway No. : 998
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    42PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[12]
    Pathway No. : 998
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    43PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[13]
    Pathway No. : 1003
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    44PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[13]
    Pathway No. : 1003
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    45PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[13]
    Pathway No. : 1003
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    46PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[14]
    Pathway No. : 1009
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    47PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[14]
    Pathway No. : 1009
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    48PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[14]
    Pathway No. : 1009
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    49PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[15]
    Pathway No. : 1015
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    50PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[15]
    Pathway No. : 1015
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    51PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[15]
    Pathway No. : 1015
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    52PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[16]
    Pathway No. : 1020
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    53PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[16]
    Pathway No. : 1020
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    54PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[16]
    Pathway No. : 1020
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    55PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[17]
    Pathway No. : 1027
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    56PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[17]
    Pathway No. : 1027
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    57PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[17]
    Pathway No. : 1027
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    58PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[18]
    Pathway No. : 1033
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    59PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[18]
    Pathway No. : 1033
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    60PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[18]
    Pathway No. : 1033
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    61PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[19]
    Pathway No. : 1039
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    62PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[19]
    Pathway No. : 1039
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    63PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[19]
    Pathway No. : 1039
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    64PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[20]
    Pathway No. : 1045
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    65PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[20]
    Pathway No. : 1045
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    66PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[20]
    Pathway No. : 1045
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    67PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[21]
    Pathway No. : 1051
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    68PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[21]
    Pathway No. : 1051
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    69PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[21]
    Pathway No. : 1051
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    70PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[22]
    Pathway No. : 1057
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    71PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[22]
    Pathway No. : 1057
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    72PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[22]
    Pathway No. : 1057
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X
    73PKC-active /
    PKC-act-raf
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[23]
    Pathway No. : 1063
    66.666544explicit E-S complexSubstrate
    craf-1

    Product
    craf-1*
        Rate consts from Chen et al Biochem 32, 1032 (1993) k3 = k2 = 4 k1 = 9e-5 recalculated gives 1.666e-5, which is not very different. Looks like k3 is rate-limiting in this case: there is a huge amount of craf locked up in the enz complex. Let us assume a 10x higher Km, ie, lower affinity. k1 drops by 10x. Also changed k2 to 4x k3. Lowerd k1 to 1e-6 to balance 10X DAG sensitivity of PKC
    74PKC-active /
    PKC-inact-GAP
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[23]
    Pathway No. : 1063
    3.3333344explicit E-S complexSubstrate
    GAP

    Product
    GAP*
        Rate consts copied from PCK-act-raf This reaction inactivates GAP. The idea is from the Boguski and McCormick review.
    75PKC-active /
    PKC-act-GEF
  • Ajay_Bhalla_
    2007_ReacDiff3

    Accession No. : 84
  • kinetics[23]
    Pathway No. : 1063
    3.3333344explicit E-S complexSubstrate
    inact-GEF

    Product
    GEF*
        Rate consts from PKC-act-raf. This reaction activates GEF. It can lead to at least 2X stim of ras, and a 2X stim of MAPK over and above that obtained via direct phosph of c-raf. Note that it is a push-pull reaction, and there is also a contribution through the phosphorylation and inactivation of GAPs. The original PKC-act-raf rate consts are too fast. We lower K1 by 10 X



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.