| 
 
Enter a Search String |  |  Special character and space not allowed in the query term.
          Search string should be at least 2 characters long. |      
 
 
Molecule Parameter List for G-GDP  |  The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.  The text color of a molecule is highlighted by   color. |  | Statistics |  Accession and Pathway Details |  |
 
 | Accession Name | Accession No. | Accession Type | Pathway Link |  Osc_Ca_ IP3metabolism | 24 | Network |  MIPP,  CaMKII,  CaM,   PKC,  IP3-3K,  Gq,   PLCbeta,  134_dephos,  145_dephos,   IP4-system,  IHP-system,  1345_dephos,   CaRegulation,  Othmer-Tang-model  |  |  This network models an oscillatory calcium response to GPCR mediated PLCbeta activation, alongwith detailed InsP3 metabolism in the neuron. It differs from the NonOsc_Ca_IP3metabolism network in the CaRegulation module and in InsP3 receptor kinetics. Details of InsP3 receptor kinetics have been adapted from the Othmer-Tang model for oscillatory Ca dynamics. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316. |  
  G-GDP acting as  a Molecule in  Osc_Ca_IP3metabolism Network
 | Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered |  | G-GDP | Osc_Ca_ IP3metabolism Accession No. : 24 | Gq Pathway No. : 125 | 1 | 1000 | No |  |   This is the G-alpha-beta-gamma trimer in association with GDP. From Pang and Sternweis JBC 265:30 18707-12 1990 we get concentration estimate of 1.6 uM to 0.8 uM. I use 1 uM which is well within this range.  |  
  G-GDP acting as a Substrate in a reaction in  Osc_Ca_IP3metabolism Network
 | Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |  
 |   | Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents |  | 1 | Basal-Act-G | Osc_Ca_ IP3metabolism Accession No. : 24 | Gq Pathway No. : 125 | 0.0001 (s^-1) | 0 (uM^-1 s^-1) | - | - | Substrate G-GDP
  Product BetaGamma G*GTP
  |  |   |   This is the basal exchange of GTP for GDP. So slow as to be nearly negligible. |  | 2 | Rec-Glu-bind-Gq | Osc_Ca_ IP3metabolism Accession No. : 24 | Gq Pathway No. : 125 | 0.006 (uM^-1 s^-1) | 0.0001 (s^-1) | Kd(bf) = 0.0167(uM) | - | Substrate G-GDP Rec-Glu
  Product Rec-Glu-Gq
  |  |   |   This is the k1-k2 equivalent for enzyme complex formation in the binding of Rec-Glu to Gq. See Fay et al Biochem 30 5066-5075 1991. Closer reading of Fay et al suggests that kb <= 0.0001, so kf = 1e-8 by detailed balance. This reaction appears to be neglible. |  | 3 | Rec-bind-Gq | Osc_Ca_ IP3metabolism Accession No. : 24 | Gq Pathway No. : 125 | 0.6 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 1.6667(uM) | - | Substrate G-GDP mGluR
  Product Rec-Gq
  |  |   |   From Berstein et al 1992 JBC 267(12):8081-8088 we know that 15-40% of Gq binds, GTP_gamma_S. Also about 20-30% of Gq is bound to GTP. To get to these values the receptor-Gq amount should be similar. These rates are designed to give that steady state with a fast tau of 1 sec.  |  
  G-GDP acting as a Product in a reaction in  Osc_Ca_IP3metabolism Network
 | Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |  
 | Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents |  | Trimerize-G | Osc_Ca_ IP3metabolism Accession No. : 24 | Gq Pathway No. : 125 | 6 (uM^-1 s^-1) | 0 (s^-1) | - | - | Substrate BetaGamma G*GDP
  Product G-GDP
  |  |   kf == kg3 = 1e-5 /cell/sec. As usual, there is no back-reaction kb = 0 |   
  
 
  | Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR   This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |   
  
 |