|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for CaM-Ca4 | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Osc_Ca_ IP3metabolism | 32 | Network | MIPP, CaMKII, CaM, PKC, IP3-3K, Gq, PLCbeta, 134_dephos, 145_dephos, IP4-system, IHP-system, 1345_dephos, CaRegulation, Othmer-Tang-model | This network models an oscillatory calcium response to GPCR mediated PLCbeta activation, alongwith detailed InsP3 metabolism in the neuron. It is similar to the Osc_Ca_IP3metab model (accession 24) except that some enzymes in the InsP3 metabolism network have been modified to have reversible kinetics rather than Michaelis-Menten kinetics. The modified enzymes belong to the groups: IP4-system, IP3-3K, 145_dephos and 134_dephos. Mishra J, Bhalla US. Biophys J. 2002 Sep;83(3):1298-316. |
CaM-Ca4 acting as a Molecule in Osc_Ca_IP3metabolism Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | CaM-Ca4 | Osc_Ca_ IP3metabolism Accession No. : 32 | CaM Pathway No. : 160 | 0 | 1000 | No | The four-calcium-bound form of CaM. It is the active form for most reactions. |
CaM-Ca4 acting as a Substrate in a reaction in Osc_Ca_IP3metabolism Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | CaMKII-bind-CaM | Osc_Ca_ IP3metabolism Accession No. : 32 | CaMKII Pathway No. : 159 | 49.9998 (uM^-1 s^-1) | 5 (s^-1) | Kd(bf) = 0.1(uM) | - | Substrate CaM-Ca4 CaMKII
Product CaMKII-CaM
| | This is tricky. There is some cooperativity here arising from interactions between the subunits of the CAMKII holoenzyme. However, the stoichiometry is 1. Kd = 0.1 uM. Rate is fast (see Hanson et al Neuron 12 943-956 1994) Hanson and Schulman 1992 AnnRev Biochem 61:559-601 give tau for dissoc as 0.2 sec at low Ca, 0.4 at high. Low Ca = 100 nM = physiol. | 2 | CaMK-thr286-bind -CaM | Osc_Ca_ IP3metabolism Accession No. : 32 | CaMKII Pathway No. : 159 | 1000.2 (uM^-1 s^-1) | 0.1 (s^-1) | Kd(bf) = 0.0001(uM) | - | Substrate CaM-Ca4 CaMKII-thr286
Product CaMKII-thr286*-C aM
| | Affinity is up 1000X over the unphosphorylated CaMKII, which makes the Kd of 0.1 nM. See Hanson et al 1994 Neuron 12:943-956. Time to release is about 20 sec, so the kb is OK at 0.1/sec. as tested by a few runs. | 3 | 3K-bind-CaM | Osc_Ca_ IP3metabolism Accession No. : 32 | IP3-3K Pathway No. : 162 | 19.2312 (uM^-1 s^-1) | 1 (s^-1) | Kd(bf) = 0.052(uM) | - | Substrate CaM-Ca4 IP3_3K
Product IP3_3K_CaM
| | Communi et al, EMBO J 16; 1997 non-phosphorylated 3kinase with low sensitivity to CaM binding (Kd = 52nM) | 4 | 3K*-bind-CaM | Osc_Ca_ IP3metabolism Accession No. : 32 | IP3-3K Pathway No. : 162 | 49.9998 (uM^-1 s^-1) | 0.1 (s^-1) | Kd(bf) = 0.002(uM) | - | Substrate CaM-Ca4 IP3_3K*
Product IP3_3K_CaM*
| | Communi et al, EMBO J 16; 1997 phosphorylated 3kinase has 25 fold greater sensitivity to CaM binding than the non-phosphorylated enzyme (Kd of 2nM) |
CaM-Ca4 acting as a Product in a reaction in Osc_Ca_IP3metabolism Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | CaM-Ca3-bind-Ca | Osc_Ca_ IP3metabolism Accession No. : 32 | CaM Pathway No. : 160 | 0.465 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 21.5054(uM) | - | Substrate Ca CaM-Ca3
Product CaM-Ca4
| Use K3 = 21.5 uM here from Stemmer and Klee table 3. Stemmer and Klee 1994 Biochem 33:6859-6866 kb/kf =21.5 * 6e5 so kf = 7.75e-7, kb = 10 |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|