|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for AMPAR_bulk | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics |
AMPAR_bulk participated as | Molecule | Sum total of | Enzyme | Substrate of an enzyme | Product of an enzyme | Substrate in Reaction | Product in Reaction | No. of occurrences | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | AMPAR_CaMKII_ weak_coupling | 65 | Network | Shared_Object_AMPAR_CaMKII_weak_coupling, CaMKII, CaM, PP1, PP2B, PP1_PSD, AMPAR, PKA, AC, AMPAR_memb, PP1_CaMKII_PSD, CaMKII_PSD | This is a model of weak coupling between the AMPAR traffikcing bistability, and the CaMKII autophosphorylation bistability. In this model, there are three stable states: Both off, AMPAR on, or both on. The fourth possible state: CaMKII on but AMPAR off, is not truly stable, since over the course of hours the AMPAR also turns on. |
AMPAR_bulk acting as a Molecule in AMPAR_CaMKII_weak_coupling Network
AMPAR_bulk acting as a Substrate in a reaction in AMPAR_CaMKII_weak_coupling Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | turnover | AMPAR_CaMKII_ weak_coupling Accession No. : 65 | Shared_Object_ AMPAR_CaMKII_ weak_coupling Pathway No. : 281 | 0.018 (s^-1) | 1 (s^-1) | Not applicable** | - | Substrate AMPAR_bulk
Product A_B
| Represents both synthesis and degradation of the receptor. The rate is set to be rather fast for now. The forward rate also includes scaling terms because the AMPAR_bulk is in the dendritic volume of 5e-18. This means that we need to lower Kf to account for the difference in volumes. Effectively Kf is 1/sec, but the scaled version becomes 9e-20/5e-18 = 0.018 | ** This is a trasport reation between compartments of different volumes. Therefore Kd is not applicable. Please Note Kf, Kb units are in number of molecules instead of concentration
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|