|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for CaM-TR2-Ca2 | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Ajay_Bhalla_ 2007_ReacDiff3 | 84 | Network | Shared_Object_Ajay_Bhalla_2007_ReacDiff3, PKC, PLA2, MAPK, PLA2, Ras, CaM, chain, kinetics, PKC, MAPK, Ras, CaM, kinetics[1], PKC, PLA2, MAPK, Ras, CaM, kinetics[2], PKC, PLA2, MAPK, Ras, CaM, kinetics[3], PKC, PLA2, MAPK, Ras, CaM, kinetics[4], PKC, PLA2, MAPK, Ras, CaM, kinetics[5], PKC, PLA2, MAPK, Ras, MAPK, CaM, kinetics[6], PKC, PLA2, MAPK, Ras, CaM, kinetics[7], PKC, PLA2, MAPK, Ras, CaM, PKC, kinetics[8], PLA2, MAPK, Ras, CaM, kinetics[9], PKC, PLA2, MAPK, Ras, CaM, kinetics[10], PKC, PLA2, MAPK, Ras, CaM, kinetics[11], PKC, PLA2, MAPK, Ras, CaM, kinetics[12], PKC, PLA2, Ras, CaM, kinetics[13], PKC, PLA2, MAPK, Ras, CaM, kinetics[14], PKC, PLA2, MAPK, Ras, CaM, kinetics[15], PKC, PLA2, MAPK, Ras, kinetics[16], CaM, PKC, PLA2, MAPK, Ras, CaM, kinetics[17], PKC, PLA2, MAPK, Ras, CaM, kinetics[18], PKC, PLA2, MAPK, Ras, CaM, kinetics[19], PKC, PLA2, MAPK, Ras, CaM, kinetics[20], PKC, PLA2, MAPK, Ras, CaM, kinetics[21], PKC, PLA2, MAPK, Ras, CaM, kinetics[22], PKC, PLA2, MAPK, Ras, CaM, kinetics[23], PKC, PLA2, MAPK, Ras, CaM | This is a 25-compartment reaction-diffusion version of the Ajay_Bhalla_2007_bistable model. The original single-compartment model is repeated 25 times.
In addition, a subset (33 out of 50) molecules can diffuse between compartments. Diffusion is implemented as a reaction between corresponding molecules in neighboring compartments. Here D = 1e-13 m^2/sec (i.e., 0.1 micron^2/sec ) so the kf and kb of this reaction for these 10 micron compartments are both 0.001/sec.
The basal calcium level in this model is held at 95 nM which is rather close to threshold for the flip to the active state. This is necessary to sustain active propagation of activation.
The stimulus file bis6-propgn_D1e-13_FigEF which was used for the model to replicate Figure 4E and 4F from the paper. |
CaM-TR2-Ca2 acting as a Molecule in Ajay_Bhalla_2007_ReacDiff3 Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 924 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 930 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 936 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 942 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 948 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 954 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 961 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 967 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 973 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 979 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 985 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 991 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 997 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1002 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1008 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1014 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1021 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1026 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1032 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1038 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1044 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1050 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1056 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1062 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. | CaM-TR2-Ca2 | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1068 | 0 | 125.7 | No | This is the intermediate where the TR2 end (the high-affinity end) has bound the Ca but the TR1 end has not. |
CaM-TR2-Ca2 acting as a Substrate in a reaction in Ajay_Bhalla_2007_ReacDiff3 Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 924 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 2 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 3 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 930 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 4 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 5 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 936 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 6 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 7 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 942 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 8 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 9 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 948 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 10 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 11 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 954 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 12 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 13 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 961 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 14 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 15 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 967 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 16 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 17 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 973 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 18 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 19 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 979 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 20 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 21 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 985 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 22 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 23 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 991 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 24 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 25 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 997 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 26 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 27 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1002 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 28 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 29 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1008 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 30 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 31 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1014 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 32 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 33 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1021 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 34 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 35 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1026 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 36 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 37 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1032 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 38 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 39 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1038 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 40 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 41 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1044 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 42 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 43 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1050 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 44 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 45 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1056 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 46 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 47 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1062 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 | 48 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 49 | CaM-TR2-Ca2-bind -Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1068 | 3.6 (uM^-1 s^-1) | 10 (s^-1) | Kd(bf) = 2.7778(uM) | - | Substrate Ca CaM-TR2-Ca2
Product CaM-Ca3
| | K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10 |
CaM-TR2-Ca2 acting as a Product in a reaction in Ajay_Bhalla_2007_ReacDiff3 Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 924 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 2 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 3 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 930 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 4 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 5 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 936 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 6 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 7 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 942 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 8 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 9 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 948 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 10 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 11 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 954 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 12 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 13 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 961 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 14 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 15 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 967 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 16 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 17 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 973 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 18 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 19 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 979 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 20 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 21 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 985 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 22 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 23 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 991 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 24 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 25 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 997 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 26 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 27 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1002 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 28 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 29 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1008 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 30 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 31 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1014 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 32 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 33 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1021 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 34 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 35 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1026 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 36 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 37 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1032 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 38 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 39 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1038 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 40 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 41 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1044 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 42 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 43 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1050 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 44 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 45 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1056 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 46 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 47 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1062 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... | 48 | diff | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | Shared_Object_ Ajay_Bhalla_ 2007_ReacDiff3 Pathway No. : 918 | 0.001 (s^-1) | 0.001 (s^-1) | Keq = 1(uM) | 500sec | Substrate CaM-TR2-Ca2
Product CaM-TR2-Ca2
| 49 | CaM-TR2-bind-Ca | Ajay_Bhalla_ 2007_ReacDiff3 Accession No. : 84 | CaM Pathway No. : 1068 | 72.0006 (uM^-2 s^-1) | 72 (s^-1) | Kd(af) = 1(uM) | - | Substrate Ca Ca CaM
Product CaM-TR2-Ca2
| | Lets use the fast rate consts here. Since the rates are so different, I am not sure whether the order is relevant. These correspond to the TR2C fragment. We use the Martin et al rates here, plus the Drabicowski binding consts. All are scaled by 3X to cell temp. kf = 2e-10 kb = 72 Stemmer & Klee: K1=.9, K2=1.1. Assume 1.0uM for both. kb/kf=3.6e11. If kb=72, kf = 2e-10 (Exactly the same !).... |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|