|
Enter a Search String | Special character and space not allowed in the query term.
Search string should be at least 2 characters long. |
Molecule Parameter List for Sos* | The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network. The text color of a molecule is highlighted by color. | Statistics | Accession and Pathway Details | |
Accession Name | Accession No. | Accession Type | Pathway Link | Synaptic_ Network | 16 | Network | Shared_Object_Synaptic_Network, PKC, PLA2, PLCbeta, Gq, MAPK, Ras, EGFR, Sos, PLC_g, CaMKII, CaM, PP1, PP2B, PKA, AC, CaRegulation | This model is an annotated version of the synaptic signaling network. The primary reference is Bhalla US and Iyengar R. Science (1999) 283(5400):381-7 but several of the model pathways have been updated. Bhalla US Biophys J. 2002 Aug;83(2):740-52 Bhalla US J Comput Neurosci. 2002 Jul-Aug;13(1):49-62 |
Sos* acting as a Molecule in Synaptic_Network Network
Name | Accession Name | Pathway Name | Initial Conc. (uM) | Volume (fL) | Buffered | Sos* | Synaptic_ Network Accession No. : 16 | Sos Pathway No. : 78 | 0 | 1000 | No | Phosphorylated form of SoS. Nominally this is an inactivation step mediated by MAPK, see Profiri and McCormick 1996 JBC 271(10):5871. I have not put this inactivation in this pathway so this molecule currently only represents a potential interaction point. |
Sos* acting as a Product of an Enzyme in Synaptic_Network Network
Enzyme Molecule / Enzyme Activity | Accession Name | Pathway Name | Km (uM) | kcat (s^-1) | Ratio | Enzyme Type | Reagents | MAPK* / phosph_Sos | Synaptic_ Network Accession No. : 16 | Shared_Object_ Synaptic_ Network Pathway No. : 70 | 2.5641 | 10 | 4 | explicit E-S complex | Substrate Sos
Product Sos*
| See Porfiri and McCormick JBC 271:10 pp5871 1996 for the existence of this step. We'll take the rates from the ones used for the phosph of Raf by MAPK. Sep 17 1997: The transient activation curve matches better with k1 up by 10 x. |
Sos* acting as a Substrate in a reaction in Synaptic_Network Network
Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated.
Kd for higher order reaction are not consider. |
| Name | Accession Name | Pathway Name | Kf | Kb | Kd | tau | Reagents | 1 | Grb2_bind_Sos* | Synaptic_ Network Accession No. : 16 | Sos Pathway No. : 78 | 0.025 (uM^-1 s^-1) | 0.0168 (s^-1) | Kd(bf) = 0.672(uM) | - | Substrate Grb2 Sos*
Product Sos*.Grb2
| | Same rates as Grb2_bind_Sos: Porfiri and McCormick JBC 271:10 pp 5871 1996 show that the binding is not affected by the phosphorylation. | 2 | dephosph_Sos | Synaptic_ Network Accession No. : 16 | Sos Pathway No. : 78 | 0.001 (s^-1) | 0 (s^-1) | - | - | Substrate Sos*
Product Sos
| | The best clue I have to these rates is from the time courses of the EGF activation, which is around 1 to 5 min. The dephosph would be expected to be of the same order, perhaps a bit longer. Lets use 0.002 which is about 8 min. Sep 17: The transient activation curve matches better with kf = 0.001 |
| Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details. |
|