NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for AC1

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
AC1 participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000020

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Synaptic_
    Network
  • 16Network
    Shared_Object_Synaptic_Network PKC PLA2 
    PLCbeta Gq MAPK 
    Ras EGFR Sos 
    PLC_g CaMKII CaM 
    PP1 PP2B PKA 
    AC CaRegulation 
    This model is an annotated version of the synaptic signaling network.
    The primary reference is Bhalla US and Iyengar R. Science (1999) 283(5400):381-7 but several of the model pathways have been updated.
    Bhalla US Biophys J. 2002 Aug;83(2):740-52
    Bhalla US J Comput Neurosci. 2002 Jul-Aug;13(1):49-62

    AC1 acting as a Molecule in  
    Synaptic_Network Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    AC1
  • Synaptic_
    Network

    Accession No. : 16
  • AC
    Pathway No. : 85
    0.021000No
    AC concentrations are tricky due to poor antibodies. I refer to an estimate from Jacobowitz, PhD Thesis, Mount Sinai School of Medicine around Pg 149 which estimates cyclase as 1/12600 of membrane protein. This gives a whole-cell conc of about 33 nM using assumptions of 2% of cell mass being membrane protein. Defer et al 2000 Am J Physiol Renal Physiol 279:F400-F416 in a good review put AC1 and AC8 (which has similar properties) as among the highly expressed form of brain cyclase. We therefore estimate its levels as a good fraction of the 33 nM, at 20 nM.

    AC1 acting as a Substrate in a reaction in  
    Synaptic_Network Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1CaM-bind-AC1
  • Synaptic_
    Network

    Accession No. : 16
  • AC
    Pathway No. : 85
    49.9998
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.02(uM)-Substrate
    AC1
    CaM-Ca4

    Product
    AC1-CaM
      Half-max at 20 nM CaM (Tang et al JBC 266:13 8595-8603 1991 Assume a rapid CaM binding of 1/sec.
    2Gs-bind-AC1
  • Synaptic_
    Network

    Accession No. : 16
  • AC
    Pathway No. : 85
    126
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.0079(uM)-Substrate
    AC1
    Gs-alpha

    Product
    AC1-Gs
      Half-max 8nM from Tang et al JBC266:13 8595-8603 kb/kf = 8 nM = 4800#/cell Also assume rapid binding of 1/sec.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.