NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By

Molecule Parameter List for G*GTP

The statistics table lists the distribution of a molecule acting either as a substrate, product, enzyme or as a molecule within the network.
The text color of a molecule is highlighted by color.
Statistics
G*GTP participated asMoleculeSum total ofEnzymeSubstrate of an enzymeProduct of an enzymeSubstrate in ReactionProduct in Reaction
No. of occurrences1000032

Accession and Pathway Details
Accession NameAccession No.Accession TypePathway Link
  • Synaptic_
    Network
  • 16Network
    Shared_Object_Synaptic_Network PKC PLA2 
    PLCbeta Gq MAPK 
    Ras EGFR Sos 
    PLC_g CaMKII CaM 
    PP1 PP2B PKA 
    AC CaRegulation 
    This model is an annotated version of the synaptic signaling network.
    The primary reference is Bhalla US and Iyengar R. Science (1999) 283(5400):381-7 but several of the model pathways have been updated.
    Bhalla US Biophys J. 2002 Aug;83(2):740-52
    Bhalla US J Comput Neurosci. 2002 Jul-Aug;13(1):49-62

    G*GTP acting as a Molecule in  
    Synaptic_Network Network
    NameAccession NamePathway NameInitial Conc.
    (uM)
    Volume
    (fL)
    Buffered
    G*GTP
  • Synaptic_
    Network

    Accession No. : 16
  • Shared_Object_
    Synaptic_
    Network

    Pathway No. : 70
  • 01000No
    Activated G protein. Berstein et al indicate that about 20-40% of the total Gq alpha should bind GTP at steady stimulus.

    G*GTP acting as a Substrate in a reaction in  
    Synaptic_Network Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1Act-PLC-by-Gq
  • Synaptic_
    Network

    Accession No. : 16
  • PLCbeta
    Pathway No. : 73
    25.2
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.0397(uM)-Substrate
    G*GTP
    PLC-Ca

    Product
    PLC-Ca-Gq
      Affinity for Gq is > 20 nM (Smrcka et al Science251 804-807 1991) so [Gq].kf = kb so 40nM * 6e5 = kb/kf = 24e3 so kf = 4.2e-5, kb =1
    2PLC-bind-Gq
  • Synaptic_
    Network

    Accession No. : 16
  • PLCbeta
    Pathway No. : 73
    2.52
    (uM^-1 s^-1)
    1
    (s^-1)
    Kd(bf) = 0.3968(uM)-Substrate
    G*GTP
    PLC

    Product
    PLC-Gq
      this binding does not produce active PLC. This step was needed to implement the described (Smrcka et al) increase in affinity for Ca by PLC once Gq was bound. The kinetics are the same as the binding step for Ca-PLC to Gq. Kd is constrained by detailed balance.
    3Inact-G
  • Synaptic_
    Network

    Accession No. : 16
  • Gq
    Pathway No. : 74
    0.0133
    (s^-1)
    0
    (s^-1)
    --Substrate
    G*GTP

    Product
    G*GDP
      From Berstein et al JBC 267:12 8081-8088 1992, kcat for GTPase activity of Gq is only 0.8/min.

    G*GTP acting as a Product in a reaction in  
    Synaptic_Network Network
    Kd is calculated only for second order reactions, like nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules, where as for first order reactions Keq is calculated. Kd for higher order reaction are not consider.
     NameAccession NamePathway NameKfKbKdtauReagents
    1Basal-Act-G
  • Synaptic_
    Network

    Accession No. : 16
  • Gq
    Pathway No. : 74
    0.0001
    (s^-1)
    0
    (uM^-1 s^-1)
    --Substrate
    G-GDP

    Product
    BetaGamma
    G*GTP
      This is the basal exchange of GTP for GDP. So slow as to be nearly negligible.
    2Activate-Gq
  • Synaptic_
    Network

    Accession No. : 16
  • Gq
    Pathway No. : 74
    0.01
    (s^-1)
    0
    (uM^-2 s^-1)
    --Substrate
    Rec-Glu-Gq

    Product
    BetaGamma
    G*GTP
    Rec-Glu
      This reaction is the critical one for activation of Gq. It probably encapsulates multiple steps. In this approximation the receptor-ligand- Gprotein complex splits up into GTP.Galpha, rec.ligand complex, and Gbetagamma. There is a hidden step of exchange of GDP for GTP. The reaction does not take these into account since it is assumed that both GTP and GDP levels are tightly regulated by metabolic control. This is the kcat==k3 stage of the Rec-Glu ezymatic activation of Gq. From Berstein et al actiation is at .35 - 0.7/min From Fay et al Biochem 30 5066-5075 1991 kf = .01/sec From Nakamura et al J physiol Lond 474:1 35-41 1994 see time courses. Also (Berstein) 15-40% of gprot is in GTP-bound form on stim.



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.