NCBS Home page
Accession List
Pathway List
Search
Authorized Users
Help
News archives

Enter a Search String

Special character and space not allowed in the query term. Search string should be at least 2 characters long.
Search in: Search for Match By


 
Result: 1 - 20 of 82 rows are displayed Previous of 5  Next

Reaction List for Accession Osc_Ca_IP3metabolism (Accession Number 24)

Entries are grouped according to Pathway Number and they are alternately color coded using  and  color.
Further ordering can be done to the table header.  indicates that ordering is done according to ascending or descending order.
Keq is calculated only for first order reactions.
Kd is calculated only for second order reactions. [nA+nB <->nC or nA<->nC+nD, where n is number and A,B,C,D are molecules]
  Reaction
Name
Pathway Name / 
Pathway No.
KfKbKdtauReagents
1 CaM-TR2-bind-CaCaM

Pathway No. 122
72
(uM^-2 s^-1)
72
(s^-1)
Kd(af) = 1(uM)-  Substrate:
 CaM
 Ca
 Ca

 Products:
 CaM-TR2-Ca2
  We use the Martin et al 1985 Eur J Biochem 151(3):543-550 rates here, plus the Drabikowski and Brzeska 1982 JBC 257(19):11584-11590 binding consts. All are scaled by 3X to cell temperature. kf = 2e-10 kb = 72 Stemmer & Klee 1994 Biochem 33:6859-6866 have values of : K1=.9, K2=1.1. Assume 1.0uM for both
2 PKC-basal-actPKC

Pathway No. 123
1
(s^-1)
50
(s^-1)
Keq = 50(uM)0.02sec  Substrate:
 PKC-cytosolic

 Products:
 PKC-basal*
  Basal activity of PKC is quite high, about 10% of max. See Schaechter and Benowitz 1993 J Neurosci 13(10):4361 and Shinomura et al 1991 PNAS 88:5149-5153. This is partly due to basal levels of DAG, AA and Ca, but even when these are taken into account (see the derivations as per the PKC general notes) there is a small basal activity still to be accounted for. This reaction handles it by giving a 2% activity at baseline.
3 IP5-inhib-5pase145_dephos

Pathway No. 128
1
(uM^-1 s^-1)
45
(s^-1)
Kd(bf) = 44.9991(uM)-  Substrate:
 IP5(13456)
 IP_5pase1

 Products:
 IP5-5pase-cmplx
  from Hoer and Oberdisse, Biochem J 278; 1991: 219-224
4 IP_4pase-inact134_dephos

Pathway No. 127
1
(uM^-1 s^-1)
19
(s^-1)
Kd(bf) = 19(uM)-  Substrate:
 IP_4pase
 IP6

 Products:
 IP_4pase_inact
  from Norris et al, JBC 269; 1994
5 IP6-inhib-5pase145_dephos

Pathway No. 128
1
(uM^-1 s^-1)
16
(s^-1)
Kd(bf) = 15.9997(uM)-  Substrate:
 IP6
 IP_5pase1

 Products:
 IP6-5pase-inhib
  from Hoer and Oberdisse, Biochem J 278; 1991: 219-224
6 ip5-inhib-1kIP4-system

Pathway No. 129
1
(uM^-1 s^-1)
15
(s^-1)
Kd(bf) = 15(uM)-  Substrate:
 IP4-1K
 IP5(13456)

 Products:
 IP5-1Kcmplx
  from Tan et al, JBC 272; 1997
7 
  • CaM-TR2-Ca2-bind
    -Ca
  • CaM

    Pathway No. 122
    3.6
    (uM^-1 s^-1)
    10
    (s^-1)
    Kd(bf) = 2.7778(uM)-  Substrate:
     CaM-TR2-Ca2
     Ca

     Products:
     CaM-Ca3
      Stemmer and Klee 1994 Biochem 33:6859-6866 K3 = 21.5, K4 = 2.8. Assuming that the K4 step happens first, we get kb/kf = 2.8 uM = 1.68e6 so kf =6e-6 assuming kb = 10
    8 CaM-Ca3-bind-CaCaM

    Pathway No. 122
    0.465
    (uM^-1 s^-1)
    10
    (s^-1)
    Kd(bf) = 21.5054(uM)-  Substrate:
     CaM-Ca3
     Ca

     Products:
     CaM-Ca4
      Use K3 = 21.5 uM here from Stemmer and Klee table 3. Stemmer and Klee 1994 Biochem 33:6859-6866 kb/kf =21.5 * 6e5 so kf = 7.75e-7, kb = 10
    9 
  • RecLigandBinding
  • Gq

    Pathway No. 125
    16.8
    (uM^-1 s^-1)
    10
    (s^-1)
    Kd(bf) = 0.5952(uM)-  Substrate:
     mGluR
     Glu

     Products:
     Rec-Glu
      From Martin et al FEBS Lett 316:2 191-196 1993 we have Kd = 600 nM Assuming kb = 10/sec, we get kf = 10/(0.6 uM * 6e5) = 2.8e-5 1/sec/# The off time for Glu seems pretty slow: Nicoletti et al 1986 PNAS 83:1931-1935 and Schoepp and Johnson 1989 J Neurochem 53 1865-1870 indicate it is at least 30 sec. Here we are a little faster because this is only a small part of the off rate, the rest coming from the Rec-Gq complex.
    10 
  • inactivate_cap_
    Ca
  • CaRegulation

    Pathway No. 132
    0
    (#^-2 s^-1)
    10
    (s^-1)
    Not applicable**-  Substrate:
     Ca-sequester
     Ca-sequester
  •  capacitive_Ca_
    entry*


     Products:
     inact_cap_entry
  •   For non-oscillatory Ca dynamics Kd was set at 3 uM. This did not allow for Ca oscillations characteristic of the Othmer-Tang model. The rates here are constrained solely by the need to generate Othmer-Tang type Ca oscillations.
    11 PKC-act-by-DAGPKC

    Pathway No. 123
    0.008
    (uM^-1 s^-1)
    8.6348
    (s^-1)
    Kd(bf) = 1079.377(uM)-  Substrate:
     DAG
     PKC-Ca

     Products:
     PKC-Ca-DAG
      Ca.PKC interaction with DAG is modeled by this reaction. Kf based on Shinomura et al PNAS 88 5149-5153 1991 and Schaechter and Benowitz 1993 J Neurosci 13(10):4361 and uses the constraining procedure referred to in the general notes for PKC.
    12 bind_IP3
  • Othmer-Tang-mode
    l

    Pathway No. 133
  • 12
    (uM^-1 s^-1)
    8
    (s^-1)
    Kd(bf) = 0.6667(uM)-  Substrate:
     IP3R
     IP3

     Products:
     IP3.IP3R
      from the O-T model in Tang et al, Biophys J 70, 1996
    13 
  • ip4-inhib-56k[1]
  • IP4-system

    Pathway No. 129
    1
    (uM^-1 s^-1)
    6.3
    (s^-1)
    Kd(bf) = 6.3(uM)-  Substrate:
     IP3-56Kcmplx
     IP4(1345)

     Products:
  •  IP4(1345)-56k-cm
    plx

  •   from Shears, JBC 264(33); 1989: 19879-86
    14 Ca-inhib-1pase145_dephos

    Pathway No. 128
    1
    (uM^-1 s^-1)
    6
    (s^-1)
    Kd(bf) = 5.9999(uM)-  Substrate:
     IP_1pase
     Ca

     Products:
     Ca-1pase-cmplx
      Ki from Inhorn & Majerus, BiochemJ 262(33); 1987: 15946-52
    15 CaMKII-bind-CaMCaMKII

    Pathway No. 121
    49.9998
    (uM^-1 s^-1)
    5
    (s^-1)
    Kd(bf) = 0.1(uM)-  Substrate:
     CaM-Ca4
     CaMKII

     Products:
     CaMKII-CaM
      This is tricky. There is some cooperativity here arising from interactions between the subunits of the CAMKII holoenzyme. However, the stoichiometry is 1. Kd = 0.1 uM. Rate is fast (see Hanson et al Neuron 12 943-956 1994) Hanson and Schulman 1992 AnnRev Biochem 61:559-601 give tau for dissoc as 0.2 sec at low Ca, 0.4 at high. Low Ca = 100 nM = physiol.
    16 actIP3R
  • Othmer-Tang-mode
    l

    Pathway No. 133
  • 1000.01
    (uM^-2 s^-1)
    5
    (s^-1)
    Keq = 0.005(uM)-  Substrate:
  •  mirror_
    Ca.IP3.IP3R

  •  mirror_
    Ca.IP3.IP3R

  •  mirror_
    Ca.IP3.IP3R


     Products:
     activeIP3R
  •   Rate set so that almost all Ca.IP3.IP3R complex (formed by Ca and IP3 binding to the IP3R) becomes the active Ca conducting channel
    17 PKC-Ca-to-membPKC

    Pathway No. 123
    1.2705
    (s^-1)
    3.5026
    (s^-1)
    Keq = 2.7569(uM)0.21sec  Substrate:
     PKC-Ca

     Products:
     PKC-Ca-memb*
      Membrane translocation is a standard step in PKC activation. It also turns out to be necessary to replicate the curves from Schaechter and Benowitz 1993 J Neurosci 13(10):4361 and Shonomura et al 1991 PNAS 88:5149-5153. These rates are constrained by matching the curves in the above papers and by fixing a rather fast (sub-second) tau for PKC activation.
    18 PP-IP5cmplx-onIHP-system

    Pathway No. 130
    0.0027
    (uM^-2 s^-1)
    2.5
    (s^-1)
    --  Substrate:
     ATP
     PP-IP5
     PP-IP5-K

     Products:
  •  PP-IP5-K-complex
  •   from Huang et al, Biochem 37; 1998 Kf calculated using Km for PP-InsP5 and ATP, and Vmax of forward and backward reactions. Kb = Vmax of backward reaction
    19 IP6cmplx-onIHP-system

    Pathway No. 130
    0.0038
    (uM^-2 s^-1)
    2.376
    (s^-1)
    --  Substrate:
     IP6
     ATP
     IP6-K

     Products:
     IP6-K-complex
      from Voglmaier et al, PNAS 93; 1996 Kf calculated from Km for InsP6 and ATP, and Vmax for forward and backward reactions Kb = Vmax of backward reaction
    20 PKC-n-DAG-AAPKC

    Pathway No. 123
    0.018
    (uM^-1 s^-1)
    2
    (s^-1)
    Kd(bf) = 111.1111(uM)-  Substrate:
     PKC-DAG
     AA

     Products:
     PKC-DAG-AA
      This is one of the more interesting steps. Mechanistically it does not seem necessary at first glance. Turns out that one needs this step to quantitatively match the curves in Schaechter and Benowitz 1993 J Neurosci 13(10):4361 and Shinomura et al 1991 PNAS 88:5149-5153. There is a synergy between DAG and AA activation even at low Ca levels, which is most simply represented by this reaction. Tau is assumed to be fast. Kd comes from matching the experimental curves.

     
    Result: 1 - 20 of 82 rows are displayed Previous of 5  Next



    Database compilation and code copyright (C) 2022, Upinder S. Bhalla and NCBS/TIFR
    This Copyright is applied to ensure that the contents of this database remain freely available. Please see FAQ for details.